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Abstract—This paper explores human-robot collaboration in
assembly tasks using a digital twin (DT) and virtual reality (VR)
technology to enhance efficiency and safety. A task planning
algorithm based on A* is introduced to determine the optimal
sequence of assembly operations. The system incorporates a
UR3e robot and colored prisms in an experimental setup,
simulating collaborative tasks. The methodology includes task
scheduling and assignment within the DT, with results evaluated
using Visual Components Premium. This approach demonstrates
improvements in task allocation, highlighting the significance of
precision and collaboration in shared workspaces.

Index Terms—human-robot collaboration, digital twin, virtual
reality, task planning, A* algorithm.

I. INTRODUCTION

Assembly tasks involve placing parts in specific locations
and are characterised by the handling of many components,
frequent interruptions, and short cycles. However, with the
rise of mass customisation and globalisation, manual methods
alone can no longer keep up [1]. Market demands have
driven automation forward, as robots offer the ability to work
without fatigue, with repeatability, precision, and high speed.
Nevertheless, although robotic assembly is more efficient and
less costly, the lack of flexibility prevents it from performing
some specific activities [2].

As a result, human-robot collaboration has emerged as a
solution for these types of tasks. Advances in sensor tech-
nology and communication protocols have given rise to a
new generation of robots, known as cobots. These kind of
robot is lighter, more flexible, and designed for safer, more
efficient integration into shared workspaces facilitating the
collaboration [3].

To improve this collaboration, in addition to using cobots, it
is essential to implement software capable of determining the
optimal sequence of actions needed to achieve a given goal in
the shortest possible time (task planner).
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An important step after this planning is task assignment,
which will depend on the available resources, time (both
activity and rest), task complexity, coherence, which refers to
whether the assembly direction of adjacent parts is the same
during the assembly process as well as the characteristics of
the objects to be assembled [3], [4].

A technology related to task planning and task allocation is
Digital Twin (DT). They are defined as a virtual representation
of a physical system, its associated environment and processes,
which are updated through the exchange of information be-
tween the physical and virtual systems [5], [6]. From the
existing literature, it can be inferred that DT helps reduce costs
while improves efficiency, safety, and human confidence [7].
Furthermore, it serves to encapsulate algorithms, provides sup-
port for decision-making and robot control, creates planning
algorithms [8] and functions as a predictor or a fault control
[9]. Because of all these reasons, DTs are used to train and to
check the correct functioning of the task planning, as well as
to study the efficiency in implementing task allocation [10].

Currently, there are several platforms available for creating
and using digital twins (DT), such as Siemens MindSphere,
Microsoft Azure Digital Twins, and GE Digital Twin for
Predix. These platforms offer comprehensive solutions that
include IoT connectivity, real-time data analysis, simulation,
and visualisation. In contrast, Visual Components Premium
specialises in 3D simulation and modelling of manufacturing
processes. It provides advanced tools for robot programming
and validation, along with an extensive library of industrial
components. For this work, which focuses on human-robot
collaboration in assembly operations, Visual Components Pre-
mium was chosen for its specialised approach, accurate sim-
ulation of collaborative interactions, and its support for using
various communication protocols.

This paper shows how to create a task planning system
based on the A* Algorithm. It has focused on collaborative
assembling tasks between a human and a robot, and how to
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integrate and test its functionality within a DT developed in Vi-
sual Components Premium. The description of these processes
is provided in the following sections: Section II outlines the
experimental environment and the structure of the task planner
and task assignment. Section III details the creation of the
task planner. Section IV presents the implementation process,
while Section V describes the conducted experiments. Finally,
Section VI draws conclusions.

II. APPROACH TO A COLLABORATIVE TASK

This work focuses on creating a task planner in a DT
for human-robot collaboration. Aiming to simulate assembling
process, the task involves coloured prisms stacked on a table,
which must be placed in goal positions by stacking them on
top of another prism or placing them on the work table.

To achieve this, the experimental environment shown in
Figure 1 has been created. Label A shows a close-up of blocks
(prisms of different colors) and places (dark grey rectangles)
where blocks can be positioned. To identify places, they have
been named with the letter ’p’ and numbered from left to right;
for blocks the letter ’b’ has been used and numbered from left
to right and from bottom to top.

In addition, it appears in label B a UR3e collaborative
robot with a suction cup as end effector, in label C a screen
displaying instructions for the operator and the robot’s actions,
in label D a tool used to manipulate the pieces when interacting
with the DT through virtual reality (VR) glasses and in label
E a button on the table for the human operator to press upon
completing their action.

Fig. 1. Experimental setup.

To represent the environment, as it is oriented toward as-
sembly tasks, the block world representation has been chosen.
This consists of a simplified representation that uses two
dimensions and includes two kinds of elements: blocks and
places. Blocks are defined as objects that can be manipulated

Fig. 2. Task planning and assignment flowchart

by the robot or by the human and change to another position,
while places are possible positions where the blocks can be
on the work surface.

Also it is necessary to relate blocks and places. To define
this relationship, it has been used the predicates: Free(X) or
Above(X,Y ). Free indicates if X (that can be a block or
a place), has a block on it or not, and Above informed if Y
(which is a block), is on top of X .

Once the setup has been designed and a way to represent it
has been chosen, the next step is to create a search algorithm
and assign actions to study the collaboration. An action is a
task that change the actual configuration of the setup to a new
one.

In this paper, the action chosen has been MOVE(X,Y,Z). It
consists of moving the block X above the place or block Y
on block or place Z. It can be applied if X and Z are free and
X is on Y. After applying it, a new configuration of the setup
will be created, it will meet the conditions X and Y free as
well as X on top of Z.

Starting with an initial and a goal configuration, as shown in
Figure 2, the A* algorithm is initiated. The algorithm begins
by generating nodes, each representing a new configuration
of the setup after moving a block. This is done by applying
the MOVE(X,Y,Z) rule, which shifts any free block in the
current configuration to a new position. Once A* completes
its process, the resulting sequence of actions is returned as a
vector: {A1, A2, ..., Aw}, where w represents the final action
to be released.

After that, actions are assigned to robot or human, through
a vector composed of the action along with who has



to do the that action. The nomenclature used has been
{(A1, H1), ..., (Aw, Hw)} where A is the action and H an
indicator of who should do it, it will be True if the human
releases the action or False if it will be done by the robot.

Finally, if H is True, the operator watch the instructions to
follow in a screen in the DT through VR glasses, while if it
is False, the robot is commanded to move or stack the block
from a position to a new one.

III. FORMALISATION OF THE TASK FOR THE A*
ALGORITHM

The goal of task planning is to complete tasks quickly and
safely. It involves determining the order of sub-tasks (actions)
from an initial configuration to a goal configuration.

Based on the block world, to represent the environment
numerically, it is needed to begin by creating two vectors that
indicate blocks and places that exist in the workspace. Blocks’
vector appears in equation 1, where n is the total number
of blocks present in the environment while places’ vector in
equation 2 where m is the total number of places.

B = (b1, b2, . . . , bn) (1)

P = (p1, p2, . . . , pm) (2)

To relate blocks and places, looking for to be able to
represent the environment, it has been used the expression
that appears in the equation 3, this is applied to x which can
be a block or a place and returns the value i if the block bi is
above x or zero if x has no block above it (it is Free).

S(x) =

{
i if bi is above x

0 if x is free
(3)

From this expression, it arises the idea of representing each
configuration j of the environment as a node Nj as it appears
in equation 4. Each node j is composed of the pair of vectors
B̂j and P̂j . B̂j arises from applying the rule in equation 3
to each block in equation 1 and the same happens with the
vector P̂j but by applying the rule to vector in equation 2.

Nj =

{
B̂j = (S(b1), S(b2), ...S(bn))

P̂j = (S(p1), S(p2), ...S(pm))
(4)

Once the representation of the environment has been estab-
lished, it can be started the task planning, using A* algorithm.
It combines uniform cost search with a heuristic that estimates
the remaining cost to reach the goal. The evaluation function
of A* is defined in the equation (5) as:

f(NC) = g(NC) + h(NC) (5)

where g(NC) represents the accumulated cost from the initial
node to the current node NC , and h(NC) is a heuristic estimate
of the cost from the current node to the goal node.

To use this algorithm, it is needed to create three functions
to calculate the cost, the heuristics and look for the neighbours
node to start applying it.

In this paper, the cost has been calculated as the number of
movements that should be made to get from the initial node
to the actual node, it appears in equation 6, represented as k.

g(NC) = k (6)

While the heuristic has been defined as the minimum
number of movements necessary to go from the current con-
figuration to the final one. Its expression is shown in equation
7. It is calculated by comparing the difference between the
vector of places for the current configuration (P̂C) and the
goal configuration (P̂G), and the difference between the vector
state of blocks for the current configuration (B̂C) and the goal
configuration (B̂G).

This entire expression is multiplied by 1
2 because moving a

block causes two changes in the vectors: one at the position it
leaves and another at the position it moves to. However, this
is counted as a single movement.

There are two summations in the equation, one that goes
from 1 to the total number of blocks (n), and another from 1
to the total number of places (m). These summations traverse
the vectors to compute the differences.

And finally, it also appears the function δ (equation 8) which
returns 1 if its two inputs (input1 and input2) are different,
and 0 if they are the same.

h(NC) =
1

2
∗

[
n∑

u=1

δ(B̂C , B̂G) +

m∑
v=1

δ(P̂C , P̂G))

]
(7)

where:

δ(input1, input2) =

{
1 if input1 ̸= input2

0 if input1 = input2
(8)

Going on with the third function: looking for neighbours
node, it’s necessary to start with the parent node (actual node).
From here, there will be a neighbour node for every move that
can be done from the actual configuration, that is, applying the
action MOVE(X,Y,Z) to every block that is free.

Once the sequence of movements to be carried out has
been calculated using A* algorithm, human and robot must
be commanded to follow them. These instructions appear on
the screen in the DT when using RV glasses so the operator
knows what he has to do while he is aware of what the robot’s
next action will be.

There are two types of instructions constructed following the
vector {(A1, H1), ..., (Aw, Hw)}, they will have the format:
”Operator/Robot, move the green block 6 to place 4” or
”Operator/Robot stacks the grey block 9 on top of the green
block 6”. This distinction is made so that the instructions to
the operator are clear and so that he is aware of what the robot
is going to do.

In addition, the instructions indicate the colour of the piece
to make it easier for the operator to identify it and pieces have
been assigned a number in case there are several of the same
colour or the user is colourblind.



An example of using the A* algorithm implemented is
presented below. First of all, it is necessary to define the
initial and goal configuration using nodes (following equation
4). They appear in equation 9 for initial configuration and in
equations 10 for goal configuration.

N0 =

{
B̂0 = (0, 3, 0)

P̂0 = (1, 0, 2, 0)
(9)

NG =

{
B̂G = (0, 0, 1)

P̂G = (0, 3, 2, 0)
(10)

The next step, it is A* algorithm, that starts from the initial
node. It looks for the neighbour nodes by applying the rule
MOVE(X,Y,Z) to the free blocks b1 and b3. The neighbours
obtained appears in Figure 3, where the Actual Node has been
represented in an oval as the Parent Node, and in rectangles are
shown the configuration of every new neighbour after applying
the rule that appears above them. The block that has been
moved is highlighted in blue.

Fig. 3.

After that, new neighbours have been set out in the Table
I, where the first column is the rule followed to arrive to the
new configuration. The second one is the Node Name, this is
to later distinguish which is the parent node. Third and fourth
columns are the state of the blocks alongside the state of the
places vectors to describe the position of every block. They
follow the expressions mentioned in equation 4. Finally, the
last column is to save the parent node.

Once the neighbours have been calculated, the cost and
heuristic of every neighbour must be calculated too. The
number of movements they have been done to go from the
initial to the actual configuration is one because they are
the initial configuration neighbours and the heuristic will be,
following equation 7: 2 for neighbour 1, 4 for neighbour 2,

TABLE I
PARENT NODE AND THEIR NEIGHBOURS.

Rule Node Name Bs Ps Parent Node
Parent Node pn (0,3,0) (1,0,2,0) 0

Move(b1,p1,b3) n1 (0,3,1) (0,0,2,0) pn
Move(b3,b2,b1) n2 (3,0,0) (1,0,2,0) pn
Move(b3,b2,p2) n3 (0,0,0) (1,3,2,0) pn
Move(b3,b2,p4) n4 (0,0,0) (1,0,2,3) pn
Move(b1,p1,p2) n5 (0,3,0) (0,1,2,0) pn
Move(b1,p1,p4) n6 (0,3,0) (0,1,2,0) pn

2 for neighbour 3, 4 for neighbour 4, 3 for neighbour 5 and
4 for neighbour 6. So the lowest cost f, calculated through
equation 5, is 3 for the neighbours 1 and 3, so the algorithm
will start exploring the both of them and will finally choose
the less costly way.

With the cost, the heuristic and the neighbours node cal-
culated, A* is applied until there is a solution or it returns
empty if there is any. For this example, it finally returns the
sequence: MOVE(b3,b2,p2), MOVE(b1,p1,b3).

IV. IMPLEMENTATION

To create the DT and integrate the A* algorithm in it, the se-
quence of steps shown in Figure 4 has been followed. It begins
designing the task to be performed and the experimental setup.
After that, the process can continue with Visual Components
Premium program (everything carried out in this program has
been highlighted in dark grey in the Figure). The first thing
to do in this program is insert all components and if needed,
connect signals.

With the entire setup positioned and connected, the next
step is to use Visual Components Python Script, this is a kind
of behaviour that works with specific commands of Visual
Components in conjunction with Python 2.7 (highlighted in
blue in the Figure).

Within the Python script, and looking for the integration of
the A* algorithm in the DT, the vectors of blocks at initial
and goal locations, and the vector of colours are introduced in
this script as show in Figure 5.

It begins an initialisation function that creates the blocks,
positions them based in the initial configuration, assigns them
a mass to make it have physics and activates its ’VR Pickable’
property so that it can be Interact with them in VR glasses.

The next step is to integrate A* into this Python script. To do
that, they have been created 3 functions to calculate the cost,
the heuristics and neighbours’ node as it has been described
in Section III. A* return a solution, which will be the order
in which actions should be carried out if there is a solution
({A1, A2, ..., Aw}) or empty if it is not possible to arrive to
the goal configuration, as mentioned in section II. Finally, if
there is a solution the robot and the human are ordered to do
their actions.

All this process allow to create the DT integrating the task
planning in it. The next step is assign actions and use VR
glasses to interact with the DT.



Fig. 4. Diagram with steps to follow to build the DT with the task planner
integrated.

Fig. 5. How to introduce nodes for initial and goal configuration of the setup
in Visual Components Python Script.

The glasses used at this paper have been Meta Quest 3. To
connect them with the DT it has been used the programs:
Visual Components Experience, SteamVR in the PC and
Steam Link in the glasses.

V. EXPERIMENTS

Last phase is experimentation to verify if A* algorithm
works correctly in the DT, to interact with it using RV glasses,
try two kind of action assignments and see the impact it has
on the total time needed to complete the task.

These experiments consist of carrying out the actions from
A*. There are two types of instructions: stack or place. ’Stack’
is move a block on another block, while ’place’ is move a
block to an empty place on the table. The action of stacking
requires greater precision because the block must be aligned
with the block below it and the action of place is simply
placing it on the table, in a larger space, so it does not need
as much precision.

To assign the actions after A* has ordered them, it has been
used two trials. Trial 1 is human placing blocks and robot
stacking them while trial 2 is human stacking blocks and
robot placing them.

These experiments have been tested in the environment
which appears in Figure 1. The initial configuration appears in
top of Figure 6 and the goal configuration in the lower part of
the same Figure. These configurations of the setup have been
chosen to include the actions: place a block to an empty place,
stack a block on another which hasn’t been placed or stack
it on one which has already changed its position to test the
difficulty of stacking a block on another which is non-parallel
to others because the human has placed it to a place without
the precision a robot has.

Fig. 6. Initial and Final configuration of the blocks.

Once the initial and goal configuration have been defined,
A* algorithm calculates the order to follow to complete the
task. It returns the sequence:

1) Human/Robot has to place green block 6 to place 4.
2) Human/Robot stacks pink block 9 on green block 6.
3) Human/Robot has to place cyan block 8 to place 5.
4) Human/Robot stacks grey block 7 on orange block 5.
And after the two trials to action assignment are tested, the

time used to release these actions appears in Table II. In it,
the first column is the actions that should be made, the second
column is the methodology used and the third column is the
time (in seconds) employed to do every action, calculated



doing an average of 10 experiments for every methodology
by an only one subject.

TABLE II
ACTIONS FOLLOWING TWO TRIALS AND THE TIME TO RELEASE THEM.

Actions Trial Time (seconds)
Move green block 6 1 9.2

to place 4 2 3.2
Stack pink block 9 1 3.2
on green block 6 2 16.6

Move light blue block 8 1 11.8
to place 5 2 3.2

Stack grey block 7 1 2.8
on orange block 5 2 16

These experiments have not been developed on a physical
setup yet, but they have been tested on VR glasses connected
to the DT running on Visual Components Premium. How it
is to release these actions using VR is shown in Figure 7
where part 1, 2 as well as 3 show the human placing the block
to a place and pressing the button using the tool in Visual
Components. Parts 4 and 5 the robot collects a block, stacks
it on another, while in part 6 a ”Task completed” message
appears when the task has been finished.

Fig. 7. Part of the tasks performed during the experiment in which the human
moves the pieces and the robot stacks them.

VI. CONCLUSION

In this work, an A* task planning has been developed in a
digital twin within the Visual Components Premium program.
After this, in order to test its operation, an experimentation
phase was carried out in which VR glasses are used to
interact with the DT. The glasses allow safe, remote training
without interrupting production. Operators can train repeatedly
to prepare for real tasks. However, they face limitations, such

as using controllers instead of hands, which requires additional
training before interacting with the DT.

Of the training phase it can be conclude that after testing two
types of task assignment, the time was 27 seconds when the
human places the blocks and the robot stacks them compared
to a time of 39 seconds when the human stacks blocks and the
robot places them. This demonstrates the importance of task
assignment and highlights the robot’s effectiveness in precision
tasks.

Future work aims to test different task assignments to find
the fastest way to perform the task, connect the DT to the real
experimental setup and environmental reconnaissance to bring
the physical configuration to the DT.

Additionally, the heuristic and cost will be modified. The
goal is to add more scoring systems that take into account
factors such as part drops and mistakes placing a part in the
wrong location to improve the deployment of the whole task.
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