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Abstract—Autonomous navigation is essential for the success-
ful integration of mobile robots in agricultural operations. In
structured fields, where permanent crops are usually disposed in
row patterns, perception-based navigation is typically used for
achieving safe and efficient in-row operation, whereas map-based
navigation and other techniques are applied for transitioning
between rows and from/to the robot base station. However,
execution and coordination of different strategies has been mostly
achieved using finite state machines or rule-based implementa-
tions, limiting orchestration of complex behaviors and scalabil-
ity. This work presents a modular reasoning architecture that
leverages behavior trees and a topological representation of the
environment for deploying agricultural robots, switching between
operation modes (perception or map-based) according to their
topological state and goal, and embedding recovery behaviors in
the event of failure. The system has been validated with different
robotic platforms (mobile robot and retrofitted tractor) and large-
scale pilots (apple orchards and table grape vineyards), resulting
in successful autonomous spraying demonstrations.

Index Terms—mobile robot, autonomous navigation, behavior
tree, path planning, agriculture

I. INTRODUCTION

Precision farming has become of great interest to farmers,

researchers and policy makers, as optimizing crop yield while

reducing resource usage and environmental impact are desired

to the agri-food sector and the green deal. Towards such,

automation of base crop management operations with mobile

robots is ideal, given their capacity to execute heavy, repetitive

and hazardous tasks with accuracy and efficiency [1]. In open

fields, GNSS-guided tractors and agri-robots are at a mature

technological level, embedding automated planning and col-

lision avoidance functions while executing operations such

as spraying, weeding and harvesting. However, for perennial

crops such as orchards and vineyards, their rough, dynamic

and seasonal nature require advanced strategies for robot

localization, planning and navigation [2].

Most navigation techniques in structured fields leverage

their patterns with crop row following methods [2], as these

are more robust than traditional waypoint following or grid

map planning. These better suit navigation outside crop row

driveways (e.g., changing rows, moving to warehouse), as

the environment is subject to fewer traversability restrictions.

Coordinating between those different approaches therefore

require a mission planner that triggers navigation modes and
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Fig. 1: Illustration of the proposed system, with two au-

tonomous navigation modes (in-row, inter-row) highlighted.

transitions between them. Besides, the complex and safety-

critical operations conducted with heavy machinery require

orchestrating diverse behaviors and gracefully handling failure

events with recovery actions, where standard state machine or

rule-based navigation are limited. In this sense, behavior trees

(BT) have gained attention in the robotics community [3] as

a way to naturally express complex plans in a modular, scal-

able fashion with robustness to failure, albeit not sufficiently

explored in agricultural robotics.

For such reason, we present a novel autonomous navigation

architecture (illustrated in Figure 1) that implements behavior

tree-based navigation modes, reasoning upon a topological

representation of perennial crop fields, and applicable to

different operations and field types across the crop cycle. To

validate our design choices, we performed experiments in large

scale pilot (LSP) fields corresponding to target scenarios, with

different robots and across seasons, evidencing a safe, robust

and efficient navigation architecture for agricultural operations.

Thus, our contributions are the following:

• A crop row estimation pipeline based on point cloud clus-

tering and linear regression for tracking parallel crop rows

and calculating the central driveway for row following.

• Navigation behavior trees with embedded recovery be-

haviors for safe and efficient row following, transitioning

between rows, and navigation outside crop parcels.

• A mission commander integrated with a GUI-based farm-

ing controller, that orchestrates the different behavior
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trees for providing full in-field autonomous navigation.

The remainder of this paper is structured as follows. Section

II provides a brief state of the art review on mobile robot

navigation in structured fields, including hybrid approaches.

Section III presents the proposed navigation solution, detailing

each component. Section IV explains the materials and meth-

ods used for system evaluation, including the robotic platforms

and large scale pilot fields used. Section V presents the results

achieved and provides a brief discussion on them. Finally,

Section VI gives concluding remarks and future directions.

II. RELATED WORK

Standard autonomous navigation approaches in agriculture

include point-to-point planning using map-based localization

[4], [5], waypoint-based GNSS positioning [6], rule-based

heuristics [7] and finite state machines [8], [9]. Topological

and hybrid field representations have been recently explored

[10]–[12] as a way to embed different navigation strategies,

typically including initialization, row following, U-turning,

and go-to-goal methods. In [13], a task-driven planning and

execution system was developed, where tasks are represented

by state diagrams and managed by a mission planner.

Behavior trees have been adopted for autonomous navi-

gation with mobile robots, mainly within the standard de-

facto ROS-based nav2 system [14] which provides diverse

planners and controllers for generic applications, as well as

recovery behaviors. Domain-specific applications are found in

the literature for search and rescue, service robotics, logistics,

and autonomous driving [3], whereas behavior-based solutions

for accomplishing agricultural tasks exist in the literature [15],

[16], but no specific implementation with behavior trees has

been identified.

With respect to reactive navigation strategies in crop row

fields, row following techniques are the main subject of

research, based either on point cloud clustering, Hough trans-

form, or vanishing point estimation from images [17], [18].

Detecting parallel rows [9], [19] adds robustness by averaging

multiple estimations or with a patterned Hough transform.

Conversely, transitioning between rows is a less studied prob-

lem, addressed by [19], [20].

III. SYSTEM ARCHITECTURE

The proposed autonomous navigation system consists of a

perception module that estimates crop row lines for reactive

navigation, a localization module to estimate the robot global

pose, a hybrid planner that contains multiple navigation modes

implemented as behavior trees, and a mission commander that

orchestrates such modes over a topological map, integrated

with an external farming controller GUI. The system has been

implemented in C++ within the ROS1 2 robotics middleware.

A. Crop Row Perception

The perception pipeline for reactive navigation (Figure 2)

consists in a crop hallway detector that leverages the structure

1https://www.ros.org/

of crop rows based on sensor data, estimating parallel line

segments that best represent the crop row driveway, coupled

with a row estimator, which derives the central reference path

(with respect to the robot frame) from the estimated crop line

segments. Such path becomes the reference for the in-row

navigation mode (Section III-D).

(a) Ground detection (b) Height selection (c) Ground projection

(d) Euclidean cluster (e) Least squares (f) Crop row

Fig. 2: Overview of the crop row perception pipeline: hallway

detector (a-e), row estimator (f).

Hallway Line Detection: using 3D LIDAR information,

this algorithm first segments the ground plane from the input

point cloud using RANSAC [21], followed by point filtering

based on a distance range [dmin, dmax] to the ground plane,

and point projection (p −→ pproj) onto it as:

pproj = p− d · n⃗ (1)

where n⃗ is the unit vector normal to the ground plane and

d is the point-to-plane distance. Data down-sampling and

Euclidean cluster extraction are then applied to identify crop

row clusters within the projected cloud, assuming the two

most dense clusters as being the hallway “walls”. Finally, a

Least Squares method is used to fit two parallel lines to these

clusters, modeled as:

y = m · x+ b+ i · s, i ∈ Z and i ∈ {0, 1} (2)

with m and b being line coefficients, s the separation between

parallel lines, and i as the line index. Solving it for all points

yields the set of parallel lines that best fit the clusters.

Crop Row Estimation: based on the detected hallway

line segments, these are filtered by distance and orientation

thresholds (based on the previous estimate) and then classified

as left or right according to their position relative to the robot.

The distance between both lines is checked against the crop

row width within a given tolerance and the central line is then

calculated as the midpoint between them.

B. Robot Localization

In orchards and vineyards, GNSS signals are not always

available or accurate due to blockage or multi-path effects by

crops or structural elements, and traditional wheel odometry

presents considerable drift in uneven terrain. For this reason,



we implemented a filtering approach for in-field localization,

fusing multiple sensors and estimators with a dual extended

Kalman filter (EKF), providing both position and orientation

robust to uncertainty or failure in any of the sources. Figure 3

presents the diagram of the localization subsystem, where the

local and global EKF modules and their input components are

shown.

/lio/odom

LIDAR-Inertial
Odometry

/wheel_odom

Wheel
Odometry

/odom/local
EKF Local

/odom/gps

/gps/filtered

NavSat Transform

/gnss/fix

GNSS

/imu/heading

IMU

/odom/global
EKF Global

Fig. 3: Localization subsystem diagram.

The local EKF module relies on a fast and accurate lidar-

inertial odometry (LIO), based on the FAST-LIO2 [22] method

and complemented with wheel odometry provided by the

robotic platforms, for estimating short-term motion. Subse-

quently, the global EKF module fuses the continuous, high-

frequency information from the short-term odometry with low-

frequency, absolute position coordinates, as well as heading

estimates from a moving baseline setup using multiple GNSS

receivers. At last, given a set of origin coordinates, conversions

between geodetic and cartesian systems are managed.

C. Topological Environment Representation

The proposed system relies on a topological field descrip-

tion to perform hybrid planning and autonomous navigation,

illustrated in Figure 4 and composed of the following entities:

Row parcel: a rectangular zone representing the region

delimited by consecutive crop rows, containing information

about its dimensions (width, length) and entry/exit points.

Free parcel: a polygonal zone representing an unoccupied

region around the crops, where robots can navigate freely.

Points of Interest: reference positions inside free parcels

where the robot can be deployed in a mission (e.g., ware-

houses, recharge stations, docks, as well as entry/exit points

from row parcels).

Fig. 4: Sample field topological representation with delimited

parcels and interest points.

Both parcels and interest points are user-provided and

defined by (sets of) global coordinates. Once defined, the

topological map is fed to the commander (Section III-E).

D. Hybrid Behavior Tree-Based Planning and Control

The core of the proposed architecture is a hybrid planning

and control approach consisting of the following autonomous

navigation modes:

In-row navigation: active when the robot is located inside

a row parcel. The navigation goal consists in traversing the

row until its end, while keeping the robot centered along the

row for navigating safely and correctly performing treatment

tasks. Due to the varying nature of crops, a reactive navigation

pipeline is preferred, as it adapts to the perceived crop distri-

bution. Using the row estimator described in Section III-A, the

row line relative to the robot frame is continuously updated

and serves as a reference for the robot controller.

Inter-row navigation: active when the robot transitions

from one row parcel to another. The exit and entry points

of source and target row parcels, respectively, are used to

calculate a fixed reference trajectory in the global frame

composed of Dubins curves. The involved headland width and

separation between rows, as well as kinematic restrictions of

the robot (e.g. minimum turning radius), are also considered

for trajectory generation.

Free navigation: active when the robot navigates between

two interest points in a free parcel. The SMAC [23] Hybrid-A*

planner is used for computing the best path considering a cost

map of the free parcel and the robot footprint and kinematics.

Figure 5 illustrates the transition between in- and inter-

row navigation modes between two parcels in a real orchard,

displaying the trajectories for row following and transition.

The navigation modes are implemented as behavior trees

using the BehaviorTree.CPP
2 library, a framework to

generate custom action, condition, control and decorator nodes

and composing them into the tree’s hierarchical structure,

allowing complex behaviors through reusable components.

The execution flow of a tree starts at the root node and

propagates based on the control flow and the execution result

of nodes (RUNNING, SUCCESS or FAILURE), permitting the

inclusion of recovery behaviors for when a given action is not

successful (e.g., when an obstacle blocks the driveway, attempt

to re-calculate the path towards a goal). Each navigation mode

has its corresponding tree, meaning that the mode will be

active until the tree is terminated. Figure 6 shows the BT

implemented for the in-row navigation mode, as an example.

All navigation modes rely on a standard Pure Pursuit [24]

controller for path tracking, for its compatibility with car-type

(Ackermann) kinematics, dynamically adjusting the steering

direction to follow a look-ahead target point over the reference

path, by setting a fixed distance ahead of the vehicle.

E. Mission Commander and Integration with GUI

The mission commander is responsible for managing and

executing a sequence of navigation sub-missions, each of

2https://www.behaviortree.dev/



Fig. 5: Navigation modes transition example.

Root

Sequence

A: CallSrv
[IN] srv_name /perception/start

A: CallSrv
[IN] srv_name /perception/stop

A: DefineParcel

[IN] enter_pose {ENTER_POSE}
[IN] exit_pose
[IN] row_width
[OUT] parcel_origin
[OUT] parcel_end

{EXIT_POSE}
{ROW_WIDTH}
{PARCEL_ORIGIN}
{PARCEL_END}

[IN] align_params {ALIGN_CONF}

RecoveryNode
[IN] num_retries    1   

Sequence ? ReactiveFallback

PipelineSequence
A: RecoveryBehavior
[IN] name FollowPathRec

RateController
[IN] hz      2.0     

DoWhileInParcel

[IN] invert_logic           false         
[IN] row_width
[IN] src_node

{ROW_WIDTH}
{PARCEL_ORIGIN}

[IN] dst_node {PARCEL_END}

A: GetPathService
[IN] service /perception/get_path
[OUT] path {path}

A: FollowPath
[IN] controller_id PurePursuit
[IN] path {path}

Fig. 6: In-row navigation behavior tree.

which consists in running a navigation mode BT with mode-

dependent execution parameters (e.g., target row or goal). For

instance, a mission of treating two row parcels and returning

to the warehouse (depicted in Figure 7) can be decomposed

into a free navigation to the first row entry point, followed

by in-row navigation, maneuvering to the second row, in-row

navigation and then free navigation back to the warehouse.

Once this sequence is generated, the commander activates

each BT by periodically running (ticking) it to ensure pro-

gression, as most of the actions are asynchronous. Execution

begins with the first BT, performing its tasks to achieve its

goal. Upon completion, the commander executes the next

tree. This iterative ticking continues, with the commander

monitoring each BT status until the mission completes when

the final tree is executed. In the event of BT failure where no

recovery actions were successful, the mission is aborted.

The mission commander is integrated with an external farm-

ing controller (Figure 8), a cloud-based GUI that generates

agricultural missions and provides real-time feedback with

interfaces for starting, pausing or cancelling missions. Users

can select tasks and optimization policies, and the farming

controller sends missions to the robotic platform that are

received and orchestrated by the commander.

Fig. 7: Sample two-row mission sequence generated by the

commander, decomposed in the following navigation modes:

free (1, 5), in-row (2, 4) and inter-row (3).

Fig. 8: Farming Controller GUI.

IV. EXPERIMENTAL METHODOLOGY

A. Large Scale Pilots

For evaluation of the proposed navigation system, two of

the project LSP fields were chosen to perform validation

experiments and public demonstrations: an apple orchard in

the region of Girona, Spain (Figure 9, top) and a table grape

vineyard in Kiato, Greece (Figure 9, bottom). Both scenarios

served for testing and trials of automated navigation and

spraying remotely commanded through the farming controller:

Field 1: Apple Orchard

• Coordinates: Latitude 42.1628, Longitude 3.0930

• Crop Type: Apple Orchard

• Row Width: 3.8 meters

• Row Length: 130 meters

• Area: 3.8 hectares

Field 2: Vineyard

• Coordinates: Latitude 37.9437, Longitude 22.7720

• Crop Type: Vineyard (Table Grapes)

• Row Width: 2.5 meters

• Row Length: 65 meters

• Area: 0.5 hectares

To evaluate the effectiveness of the row perception meth-

ods for reactive navigation, the system was tested in the

Girona orchard pilot across different growth stages. Tests

were conducted in early spring (no foliage) and late summer



Fig. 9: Large scale pilot fields considered for the experiments:

apple orchard (top), table grape vineyard (bottom).

Fig. 10: Evaluation platforms: NH T4.110f retrofitted tractor

(left), AGC CAROB agri-robot (right).

(full foliage) to assess robustness under varying environmental

conditions, while the vineyard trials in Kiato occurred only

during summer. The positioning ground truth used to evaluate

the perception of the reactive path during in-row navigation

is provided by the dual extended Kalman filter (EKF) which

effectively compensates for GNSS signal shortages.

B. Evaluation Platforms

To demonstrate adaptability to different robotic platforms,

we deployed the proposed system for real-time execution in a

retrofitted tractor and a mobile agri-robot (Figure 10).

Retrofitted Tractor: For the apple orchard pilot, a New

Holland (NH) T4.110f autonomous tractor with car-type kine-

matics was used. The tractor was retrofitted by undergoing

electronic and mechanic modifications on gas, steering and

brake systems to allow remote control. The sensors installed

for data acquisition are a RSHelios-16P 3D LIDAR, an

OAKD-LR Stereo camera, a UM7 IMU and an AGCBox dual

GNSS receiver and antennas.

Mobile Agri-Robot: For the vineyard pilot, an AGreen-

culture (AGC) CAROB tracked robot was employed, whose

dimensions and differential kinematics simplify planning and

navigation stages by providing higher mobility. The same

sensor setup as of the retrofitted tractor was used.

V. RESULTS AND DISCUSSION

Following the autonomous spraying trials in the orchard and

vineyard pilots, Figure 11 shows the resulting trajectories for

each of the missions accomplished, along with point cloud

maps of the fields generated by the LIO module. In both cases,

the system was capable of freely navigating towards a row

entry, followed by reactively crossing two row parcels while

executing transitions between them, validating the hybrid plan-

ning and orchestration approach. During the maneuvering, the

robots were capable of exiting/entering the row parcels aligned

with the principal direction since minimum exit/entry distances

from the parcels were preset, ensuring a smooth transition

between inter-row and in-row modes. Eventual faults (obstacle

detection, spraying system failure) were managed by the BT

recovery behaviors, which in this case would interrupt the

navigation until the conditions were solved, with no missions

aborted due to BT failure.

Fig. 11: Autonomous mission trajectories in apple orchard

(top) and vineyard (bottom).

With respect to the perception module, Figure 12 presents

the positioning error of the estimated row line relative to

the equivalent commanded paths (considering a line segment

over the interest points) for all considered scenarios. Table I

summarizes this comparison, detailing maximum error, mean

absolute error (MAE), and standard deviation for all cases.

The field frondosity affects the reactive trajectory accuracy,

as when vegetation is minimal or absent, the resulting path

aligns closely with the theoretical row central line, while in

vegetation-rich environments, the irregular shapes and obsta-

cles introduced by foliage leads to noisy estimates and devia-

tions between the reactive path and the reference line. Despite

the differences in both cases, overall, the system operates

accurately in both scenarios. No significant differences were

found for different field types in similar vegetation conditions.
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Fig. 12: Position error of the reactive path with respect to the

commanded in orchard non-vegetation (top) and vegetation

(middle) and vineyard in vegetation conditions (bottom).

TABLE I: Error comparison between commanded and reactive

paths for different field vegetation conditions and crops.

Field conditions Max. error [m] MAE [m] Std. dev. [m]

Orchard - no vegetation 0.0996 0.0406 0.0225

Orchard - with vegetation 0.2592 0.0669 0.0552

Vineyard - with vegetation 0.2520 0.0739 0.0607

Regarding the control performance, Figure 13 displays

results on lateral distance to both crop sides during reactive

navigation for all considered scenarios. It is noted that the

average difference between distances was less than 0.1m

for the non-vegetated case, and 0.2m for the vegetated one,

indicating that the Pure Pursuit-based controller was able to

track the central row lines accurately.

TABLE II: Distance metrics on crop lateral distance for the

considered scenarios.

Field conditions Sum [m] MAE [m] Std. dev. [m]

Orchard - no vegetation 3.354 0.1472 0.1439

Orchard - with vegetation 3.0966 0.2163 0.1853

Vineyard - with vegetation 2.5132 0.1275 0.1494

VI. CONCLUSION

This work presented an autonomous navigation system for

agricultural robots with a focus on perennial, row-based crops

such as orchards and vineyards, although in principle it could

be applicable to other fields with crop row patterns such as

arable fields. By orchestrating behavior trees over a topological

representation of the field, the system can switch between

different navigation modes while handling complex behaviors,
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Fig. 13: Comparison of lateral distance from robot to crop

sides in orchards with no vegetation (top), with vegetation

(middle), and vineyard with vegetation (bottom).

such as recovery actions and implement management, within

each mode. The presented architecture is therefore modular

and scalable, while retaining navigation accuracy and safety,

with a demonstrated potential to be integrated with agricultural

farm management systems and digital twins. Future work

directions include developing an automated end-of-row de-

tection, based on detected clusters or learned features, which

could facilitate the transition between in-row and inter-row

navigation modes and prevent dependence on global local-

ization systems, and extending the proposed system to other

operations such as harvesting and pruning, thereby enhancing

its usefulness to end-users.
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