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Abstract—In this paper, we propose a Linear Quadratic
Gaussian (LQG) approach to control an unmanned Wing-In-
Ground (WIG) vehicle. We use a nonlinear and nonstationary
state-space six degrees of freedom (6 DOF) model, obtained
by system identification, around the trimmed operating point.
Implementing the proposed control strategy includes defining the
desired trajectory of motion, linearizing the model around the
trim operating point, and computing adequate controller gains.
The feasibility of implementing the proposed approach has been
demonstrated through system behavior simulations in various
conditions using Matlab and Simulink.

Index Terms—WIG vehicle, control system, LQG, mathemat-
ical model, ground effect

I. INTRODUCTION

Numerous works on nonlinear systems control for various
kinds of vehicles can be found in the literature, such as [1]
where feedback control for flight control systems is presented,
[2] in which stabilizing back-stepping controller for moored
and free-floating ships is designed, the comparison of two
non-linear model-based control strategies for autonomous cars
analyzed in [3] and back-stepping control and nonlinear op-
timization for position and attitude control of hybrid drones
described in [4]. However, when looking into the solutions
to the WIG vehicle control problem, the body of literature
narrows down significantly. Some of the research papers deal
with this problem in the way of applying linear or nonlinear
control strategies to complete nonlinear models described with
coupled and time-varying equations such as [5] and [6]. On
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the other hand, there are papers approaching this problem
by decoupling linearized models and focusing on controlling
longitudinal or lateral dynamics, such as [7], [8] and [9], or
[10]. One can also find a handful of comparative analysis
review papers such as [11] which compares stability and safety
characteristics of control strategies with and without feedback
and useful advice and strategies for control implementation,
such as described in [12].

WIG vehicles use the ground effect, which reduces the drag
force and increases the lift force. Due to this, WIG vehicles can
fly at low altitudes and high speeds and achieve high energy
efficiency while carrying heavy loads. Despite the century-
long study of WIG vehicles, controlling WIG vehicles remains
a significant challenge. Advances in computing and control
strategies now offer the potential to solve these control issues,
ensuring safe and efficient operation across different flight
regimes. The subject of this paper is the design of a WIG
vehicle control system using the LQG control strategy. The
LQG strategy can be applied to a wide range of multivariable
nonlinear and non-stationary systems and is a combination
of already known control concepts - Linear Quadratic (LQ)
control and the Kalman filter. This strategy assumes that the
state-space model of the system is known and is often applied
to systems with multiple input and output variables.

The remainder of the paper is laid out as follows. In
Section I, the introduction is presented, including the literature
review of the stated challenge. Section II is dedicated to the
mathematical modeling of the system, which includes defining
reference frames, state and control vectors, and forces and
torques acting on the vehicle, resulting in a final system of
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equations of WIG vehicle motion. Section III introduces the
LQG strategy, trimming the WIG vehicle model using numer-
ical optimization and model linearization around the operating
trim point. The simulation results, performance evaluation, and
conclusion are given in Section IV and Section V, respectively.

II. MATHEMATICAL MODEL

A mathematical model is fundamental in science and engi-
neering, as it is a very useful and compact way to capture
known knowledge about a process. In general, it is not
possible to form an entire model based only on knowledge
of physical laws, but some parameters are determined by
experimental methods. The biggest challenge in mathematical
system modeling is determining the state variables, which
essentially describe the dynamics of flow and storage of energy
and mass in the system, so positions and velocities are most
often used as states. The proposed system modeling principle
draws inspiration from various models found in the literature.
One of them is the Research Civil Aircraft Model [13] which
is a twin-engine civil aircraft model developed by the Group
for Aeronautical Research and Technology in Europe. For
mathematical modeling, this craft is viewed as a rigid body,
with possible translation and rotation around the x-, y- and
z-axis, which is transferable to the mathematical modeling
of WIG vehicles. In this section, the necessary concepts of
mathematical modeling of the WIG vehicle are presented
and described in detail, equations of motion are derived and
analyzed, and the necessary notation is established. More
precisely, in the following subsections, reference frames, state
vector and control surfaces, forces, and moments acting on
the WIG vehicle are defined and a mathematical model in the
state space is presented.

A. Reference Frames

To describe the dynamics of the WIG vehicle, including
the forces and moments that act on it, we must first define
the reference frames. In the literature, the standard reference
frame used to describe the dynamic equations of a 6 DOF
system are the following:

• North-East-Down (NED) Reference Frame - Inertial ref-
erence frame, whose axes are located as shown in Fig. 1,
the x-axis is pointing north, the y-axis is pointing east,
and the z-axis pointing toward the center of the Earth.

• Reference frame fixed to the body - The reference frame
whose origin is fixed to the center of gravity of the
vehicle. Its axes are located as shown in Fig. 1, xB
is pointing in the direction of the vehicle nose, yB is
pointing to the right wing and zB is pointing downward.

• Wind Reference Frame - It is used to describe aerody-
namic forces in the form of dimensionless coefficients.
The xV -axis is aligned with the velocity vector that is
obtained after rotating the yB-axis according to the angle
of attack and the xB-axis according to the side-slip angle,
as shown in Fig. 1.

B. System of Equations of Motion

The motion of the WIG vehicle can be described by stan-
dard nonlinear differential equations of motion, with possible
translation and rotation about x, y, and z axes, known as the
6 DOF model [14] in the following form:

m( ˙vB + ω × vB) = Fm

Jω̇ + ω × Jω =Mm

ẋi = TobvB

Φ̇ = Rω

(1)

where the vector Φ represents the Euler angles vector, ω is
vector of angular velocities, vB represents the velocity vector
relative to the body reference frame, ẋi represents the velocity
vector relative to the NED reference frame, R is the rotation
matrix, Tob is the translation matrix, m is mass of the vehicle
and Fm and Mm represent the force and moment vectors
acting on the WIG vehicle. To derive the mathematical model
of the WIG vehicle in the presented form, it is necessary to
adopt certain assumptions:

1) WIG vehicle is considered as a rigid body;
2) The mass of the WIG vehicle is constant in time;
3) The Earth is considered a flat ground and at the same

time an inertial reference frame.
With the adopted assumptions, it is possible to apply first and
second Newton’s laws of motion. The external forces acting on
the WIG vehicle are considered a combination of gravitational,
aerodynamic, and propulsion forces

F = Fg + Fa + Ft1 + Ft2 (2)

and the external moments are a combination of aerodynamic
and propulsion moments

M =Ma +Mt1 +Mt2 (3)

For expressing aerodynamic forces and moments in the wind
reference frame, which is aligned with the direction of the
wind, aerodynamic coefficients CD, CQ.CL, Cl, Cm, Cn, and
the following aerodynamic angles were introduced:

Fig. 1. Reference Frames



• Angle of attack α - Angle formed by the direction of
the longitudinal axis of the body with the x component
of the velocity vector of the body u and is defined as
α = arctan

(
w
u

)
.

• Side-slip angle β - Angle formed by the direction of the
longitudinal axis of the body with the y component of
the velocity vector of the body v. It is defined as β =

arcsin
(

v
Va

)
.

• Air-mass-referenced flight path angle γa - Angle formed
by the velocity of the center of mass of the vehicle. When
negative, the plane descends and vice versa, and it plays
a fundamental role in defining level flight conditions. It
is defined as γa = θ − α.

The state vector consists of variables that describe the state
of the WIG vehicle, which are linear velocities u, v, w, Euler
angles ϕ, θ, ψ, angular velocities p, q, r and position in NED
reference frame xc, yc, zc, in vector form as

x = [u, v, w, ϕ, θ, ψ, p, q, r, xc, yc, zc]
T (4)

The control vector reflects the control surfaces of the WIG
vehicle, in this particular case elevator, ailerons, rudder, and
two throttles, respectively in vector form

U = [δe, δa, δr, δt1, δt2]
T (5)

where δe is elevator deflection, δa aileron deflection, δr rudder
deflection, δt1 and δt2 are [0, 100] percentage signals of the
total achievable exerted engine force. It is assumed that the
wind speed Vw and side-slip angle β are equal to zero,
therefore following simplifications are considered:

• Airspeed is equal to ground speed Va = Vg
• Velocity is equal to velocity relative to the air mass
u = ur, v = vr and w = wr

• Heading angle equals course angle ψ = χ
• Flight path angle equals air-mass-referenced flight path

angle γ = γa

Taking into account previously adopted reference frames and
analyzed forces and moments, the equations of motion in the
state space are:

u̇ = −1

2
ρV 2

a

S

m
(CD cosα cosβ + CQ cosα sinβ−

CL sinα) +
Ft1 + Ft2

m
− g sin θ − qw + rv

(6)

v̇ = −1

2
ρV 2

a

S

m
(CD sinβ − CQ cosβ) + g sinϕ cos θ

−ru+ pw
(7)

ẇ = −1

2
ρV 2

a

S

m
(CD sinα cosβ + CQ sinα sinβ+

CL cosα) + q cos θ cosϕ− pv + qu
(8)

ṗ =
Cl

1
2ρV

2
a S

Jxx
(9)

q̇ =
Cm

1
2ρV

2
a S + (Jzz − Jxx)

Jyy
(10)

ṙ =
Cn

1
2ρV

2
a S + (Jxx − Jyy)qp

Jzz
(11)

ψ̇ =
r cosϕ+ q sinϕ

cos θ
(12)

ϕ̇ = p+ (r cosϕ+ q sinϕ) tan θ (13)

θ̇ = q cosϕ− r sinϕ (14)

Ẋc = R · [u, v, w]T (15)

where CD, CQ.CL, Cl, Cm, Cn are aerodynamic coefficients,
1
2ρV

2
a S air pressure, with ρ, S and m being air

density, wing area and total mass of the vehicle,

Ẋc = [ẋc, ẏc, żc]
T , J =

Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz

 inertia matrix

and R =

cθcψ cψsθsϕ− sψcϕ sϕsψ + sθcψcϕ
cθsψ sψsθsϕ+ cψcϕ sθsψcϕ− sϕcψ
−sθ sϕcθ cϕcθ

 where

c and s represent cos and sin of the respective Euler angles.

III. LQG CONTROL STRATEGY

LQG strategy is an approach in control theory that belongs
to linear control techniques that optimize quadratic functions.
It combines two well-known and most-used concepts in control
theory: the LQ approach and the Kalman filter. The LQ
concept aims to find the optimal control law that minimizes
the quadratic cost function, considering system states and
control signals. The implementation of this strategy assumes
knowledge of system dynamics and noise-free measurements.
The Kalman filter estimates the system’s state by combining
measurements with noise and knowledge of the system’s
dynamics. It provides an optimal state estimation, even in
the presence of noise in the measurements. Therefore, the
LQG controller ensures a stable and robust system response
to disturbances and noise, and it is widely used for controlling
Multiple Input and Multiple Output (MIMO) systems. Before
applying the LQG control strategy technique, it is necessary to
select operating points and linearize the model around them.
Then, based on the linearized model, the LQG controller is
designed. The LQG control technique aims to minimize the
following criterion function

J =

∫ ∞

0

(x(t)
T
Qx(t) + u(t)

T
Ru(t)) dt (16)

by generating the control signal

u(t) = −K(t)x(t) (17)

where Q and R are weighting matrices, K(t) gain which is
calculated from the following equation

K(t) = −R(t)−1
B(t)

T
S(t) (18)

in which S(t) is the solution to the Riccati differential
equation. The first step in designing an LQG controller is
to calculate the LQ optimal gain. For the calculation of the
optimal gain, it is necessary to adopt appropriate weighting



matrices that significantly affect the controller performance.
There are certain empirical recommendations for adopting
the initial values of the weight matrices. Then, the optimal
values are determined by observing the system’s behavior for
the adopted parameters. For the observed system, the weight
matrices were determined using the trial-and-error method,
starting from the recommended values until matrix values that
achieved satisfactory results were found. Based on the weight
matrices, by solving the Riccati equation, the corresponding
LQ gains were calculated, and then the Kalman filter was
designed for the estimation of all variable states. It is important
to note that as input variables of the Kalman filter, correction
control signals and obtained deviations of the output variables
from the nominal values are passed on, and then the estimated
deviations of the state variables are multiplied by the LQ
gain and added to the nominal control signal. The control
system with an incorporated LQG controller that generates
the corrective control signal is presented in the following block
scheme in Fig. 2, where the plant block represents the behavior
of the system when the trim control values are applied.

A. Trimming the WIG Vehicle

Adopting the operating working point is a necessary step for
linearizing the nonlinear equations describing the system dy-
namics and the subsequent application of the LQG controller.
For aerial navigation, the operating points are usually chosen
as longitudinal equilibrium states in which the velocity and
gravity vectors lie in the plane of symmetry of the vehicle,
i.e., operating points that correspond to flight modes such
as steady flight, climbing, or descending. Since the principle
of flying a WIG vehicle is based on the maximum use of
the ground effect in steady flight, it is desirable to ensure a
steady flight at a certain speed without a change in direction.
In steady flight, the WIG vehicle balances out forces in two
directions. Vertically, the lift force matches the gravity force
so the vehicle neither rises nor falls. Horizontally, the thrust
force equals the drag force so the vehicle moves at a constant
speed. This balance ensures a smooth and stable flight. Also,
in steady flight, there is no change in the starting values of
the state variables, therefore it is valid that the first derivatives
of the nine state variables are equal to zero. The objective
was to compute trim states and inputs when the WIG vehicle

Fig. 2. LQG Block Scheme

is in cruise steady-state flight, simultaneously satisfying the
following conditions:

• Travelling at constant trimmed steady-state flight speed
V ∗
a = 85m/s

• Constant flight path angle γ equal to zero
• Constant speed u̇∗ = v̇∗ = ẇ∗ = 0
• Constant roll and pitch angles ϕ̇∗ = θ̇∗ = ṗ∗ = q̇∗ = 0

The control and state values, which ensure the presented trim
condition, were calculated using numerical optimization, con-
sidering the limitations of the control signals. By minimizing
the criterion function J2 = PTWP , where P is a vector of
previously introduced trim conditions and W is the weighted
identity matrix, the following trim values of control signals,
states, and their first derivatives for applied trim control values
were obtained using the Nelder-Mead simplex search method
[15]

u∗ = [0,−0.178, 0, 0.0821, 0.0821]T (19)

x∗ = [84.9905, 0, 1.2713, 0, 0, 0, 0, 0.0150, 0]T (20)

ẋ∗ = [0]9x1 (21)

B. Linearization around operating trim point

Model linearization around the previously chosen operating
trim point was performed using the small perturbation theory.
Because the functions in the state space system model around
the chosen operating point are time-invariant, they can be
represented with first-order Taylor expansion. The resulting
linearized model is given in matrix form as

d∆x(t)

dt
= A∆x(t) +B∆u∗(t) (22)

∆y(t) = H∆x(t) +D∆u∗(t) (23)

where H = I9x9, D = [0]9x9, ∆u∗(t) =
[
∆u(t)

1

]
.

As a final step, the controllability, observability, and stability
of the linearized system were analyzed using Kalman’s tests
and plotting the pole-zero graph. The outcome of the analysis
was that the system is controllable and observable and pos-
sesses marginal stability, which was expected due to unstable
WIG vehicle dynamics.

IV. SIMULATION RESULTS AND DISCUSSION

After the model and controller were implemented in the
chosen software Matlab and Simulink, measurement noise and
disturbance were modeled and used for robustness analysis of
system behavior. The behavior of the system was simulated for
1000 seconds with different Gaussian white noise present in
the measured state signals and disturbance applied to the state
u during the time interval [700, 750]s with amplitude 50%
of the trim value of the state. The simulation results of the
closed-loop system with the LQG controller and the Kalman
filter with the conditions presented are shown in the following
Fig. 3 to Fig. 9. Furthermore, to analyze compliance with the
conditions previously introduced for steady-state flight, Table
I shows squared errors for the most important variables.



Fig. 3. Linear Velocities

Fig. 4. Angular Velocities

From the graphs shown, we can notice that as the noise level
increases, deviations from the nominal values and oscillations
follow the same trend and are visible in all state variables.
Nevertheless, these deviations are very small-scale, and the
controller manages to cope with this disturbance. Looking at
the behavior during the interval of action of the disturbance
in the state variable u, we can notice greater peaks present in
the total velocity Va, especially at the moment of activating
and deactivating the disturbance. Furthermore, the maximum
amplitude of the total velocity increases with the increase of
the noise level; still, the deviations from the nominal signal
are insignificant, in the value range of approximately 10−5

to 10−3, with respect to the increase in the noise level, as
shown in Table I. Altogether, increasing noise levels leads
to consistent oscillations across all state variables, although
these remain minor, and the controller effectively mitigates
them. During disturbance presence in the state variable u,
notable peaks occur in total velocity Va, with peak amplitudes
increasing alongside noise levels, yet the controller preserves

Fig. 5. Euler Angles

Fig. 6. Total Vehicle Velocity

insignificant deviations from the nominal signal.

V. CONCLUSIONS AND FUTURE WORK

This paper analyzes the possibility of implementing LQG
control as a cost-effective strategy to control an unmanned
WIG vehicle. The performance of the proposed approach has
been demonstrated through its application to the control of the

TABLE I
MEAN SQUARED ERROR FOR DIFFERENT NOISE LEVELS

σ2
n 500 1000 15000

MSEVa 9.900110−5 0.0001061 0.00016868
MSEγ 0.00022369 0.0002237 0.00022355
MSEu̇ 9.44110−8 1.485210−7 2.304810−6

MSEv̇ 0.00027449 0.00051591 0.0074713
MSEẇ 2.653810−6 4.126410−6 4.032310−5

MSEϕ̇ 2.344810−7 4.570810−7 7.368410−6

MSEθ̇ 4.487810−10 6.946610−10 6.784410−9

MSEṗ 1.032810−7 1.939110−7 2.861110−6

MSEq̇ 2.664910−9 4.492810−9 5.028210−8



Fig. 7. Flight Path Angle

Fig. 8. Control Signals

WIG vehicle around the chosen trim operating point reflecting
steady-state flight. Furthermore, the practical robustness of
the proposed controller was analyzed through simulations
in the presence of measurement noise and disturbance in
one of the state variables. Presented results have shown
that the LQG controller serves as an efficient and robust
tool for accomplishing trim condition state of nonlinear and
nonstationary system dynamics with cost-efficiency in various
conditions, including the presence of system disturbance and
measurement noise. This approach represents the initial step
toward controlling unmanned WIG vehicles. In the future,
algorithms for calculating and adapting cost and noise ma-

Fig. 9. Corrective Control Signals

trices can be used to improve controlled system performance.
Likewise, the possibility of implementing a sequential LQG
approach proposed in [16] to follow a predefined trajectory
that includes take-off and landing will be analyzed. Future
work includes exploring the possibilities of implementing non-
linear and adaptive techniques and analyzing system behavior
with designed controllers, accompanying the implementation
of the control system to physical prototypes, and performing
adequate field tests to analyze the full system behavior.

REFERENCES

[1] J. Hauser, S. Sastry, and G. Meyer, “Nonlinear controller design for
flight control systems*,” IFAC Proceedings Volumes, vol. 22, no. 3, pp.
385–390, 1989. Nonlinear Control Systems Design, Capri, Italy, 14-16
June 1989.

[2] J. Peter Strand, K. Ezal, T. I. Fossen, and P. V. Kokotović, “Nonlinear
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