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Planning Library (OMPL), which includes several state-of-

the-art sampling-based path planning algorithms [3]. However,

OMPL does not contain the ability to detect collisions or for

visualization, which arises from a deliberate design choice to

avoid linking it to a specific collision checker or visualization

front end. Contrasting with OMPL, there are some complete

solutions, that already include extra functionalities apart from

the planning. One such solution is Open Robotics Automation

Virtual Environment (OpenRAVE), which provides a platform

for studying, designing, and implementing motion planning

algorithms in practical robotics scenarios [4]. Its focus is on

simulating and verifying kinematic and geometric data relevant

to motion planning. Another similar solution is Robotics

Library (RL), a standalone C++ library focusing on robot

kinematics, motion planning, and control [5]. It covers mul-

tiple areas, such as mathematics, kinematics and dynamics,

hardware abstraction, motion planning, collision detection,

and visual representation. MoveIt is another framework that

isolates the user from the low-level code for planning, collision

checking, and optimization problems. Although all the pre-

sented solutions can address most of the challenges researchers

encounter, OpenRAVE and RL, despite being comprehensive

solutions to control robotic manipulators, they do not receive

as much community input as MoveIt.

Despite being a comprehensive solution, MoveIt is not a

user-friendly framework, because of its integration with several

planning, collision, and optimization libraries resulting in a

large number of configurable parameters. These parameters

often need to be adjusted multiple times in real or simu-

lated scenarios, which is not a straightforward task. Many

researchers use MoveIt for various movements with robotic

manipulators, with or without environmental awareness, to

avoid collisions. However, the high level of parametrization

and the diversity of libraries used can pose challenges for

researchers and beginners.

Considering this, the paper presents an efficient and modular

pipeline for interacting with the MoveIt framework, allowing

an easier parameter reconfiguration and a general pipeline

solution for the motion planning problem, retrieving collision-

free trajectories from a single action server request.

Abstract—This paper discusses the emerging field of robotics, 
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I. INTRODUCTION

It is widely recognized that robotic manipulators are trans-

forming operations across various industrial sectors. The adop-

tion of these technologies is driven by the potential benefits

they offer, such as enhanced productivity and reduced op-

erator risk. However, these systems operate on the basis of

complex robotic concepts. In this context, motion planning is
a critical aspect of robotics, applicable to a wide range of

applications from picking up objects for aerospace construc-

tion factories [1] or in car painting in the automotive area

[2]. Several solutions for the motion planning problem are

currently available for use. One of them is the Open Motion
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Following this introduction, the article is structured as fol-

lows: Section II presents a review of some related works, and

Section III describes the structure of the pipeline developed

and its working principle. Section IV presents all the tests and

consecutive results of the implementation of the pipeline in a

real robot. Finally, Section V presents the main conclusions

and key findings from this paper.

II. RELATED WORK

In the topics of robotics and motion planning, significant

advancements have been made to simplify the programming

process and enhance the autonomy of robotic systems. A

common thread among these advancements is the use of Robot

Operating System (ROS)-based frameworks and integrated

with MoveIt for motion planning.

Kingston and Kavraki [6] introduced Robowflex, a tool

designed to streamline interactions with MoveIt for general

motion planning applications. Robowflex serves as an Appli-

cation Programming Interface (API) that facilitates the manip-

ulation of robots, collision environments, planning requests,

and motion planners. It offers the capability to develop self-

contained scripts for evaluating motion planning algorithms,

which is particularly beneficial for researchers and developers

testing and comparing different motion planning algorithms

in a controlled and isolated environment. Its main focus is to

simplify certain steps in the robotic motion planning offered

by MoveIt, allowing it to describe several lines of code in

a single command. Furthermore, Robowflex’s compatibility

with other libraries like OMPL, DART, and ROS Industrial

Tesseract enhances its versatility, making it a valuable tool that

can be integrated into various robotics projects. This library

was successfully implemented in the NASA Robonaut 2.

Building on this foundation, Villagrossi et al. [7] presented

a comprehensive ROS-based framework that integrates various

functionalities crucial to robotics. This framework allows for

the inclusion of functionalities to control various robotic arms,

thereby providing a high level of autonomy in the execution

of different tasks. The framework’s ability to autonomously

process manipulation actions, such as picking and placing

objects, and managing the kinematics model of the robotic sys-

tem, represents a significant advancement in the field. Notably,

the framework also embeds motion planning functionalities,

provided by MoveIt, for generating collision-free trajectories,

by querying a planning scene that can be dynamically updated

and connected to a perception system, a feature that resonates

with the capabilities of Robowflex.

Faroni et al. [8] introduced a novel approach to human-

robot collaboration tasks. They proposed a two-layered con-

trol approach divided into task planning and action planning

layers. Each layer operates at a specific level of abstraction,

with the task planning layer considering high-level operations

without taking into account movement properties, and the

action planning layer optimizing the execution of high-level

operations based on human state and geometric reasoning. This

layered approach echoes the structure of both Robowflex and

Villagrossi et al.’s framework, where high-level operations are

optimized based on specific parameters.

The works presented focus on creating frameworks that

include MoveIt, or simplifying certain aspects of it, while still

maintaining dependencies with other functionalities. However,

not all of these solutions allow for the easy configuration

of the parameters associated with MoveIt. In contrast, the

solution proposed in this text aims to isolate MoveIt from other

functionalities, thus removing the need for users to manipulate

specific parameters in the code, encapsulating the whole task

of motion planning, besides just simplifying the code writing.

This is achieved by simplifying the configuration through a

YAML Ain’t Markup Language (YAML) file, which can be

modified without the need to recompile the project. The goal

of this solution is to provide a high-level interaction between

the user and the robot manipulator.

III. IMPLEMENTATION

The ROS1-based action server [9] described in this paper

is based on a modular textual configurable pipeline paradigm

structure which identifies different heuristics, in a YAML file.

These heuristics define the processing workingflow of the

system besides configurations parameters according to specific

demands. Two other works were developed using this modular

structure, implemented in this paper, being one for estimating

grasp positions for several objects in picking tasks in aerospace

construction factories [1] and other for bin-picking for ship-

building logistics [10].

The developed pipeline aims to simplify the interaction of

researchers and enthusiasts with the MoveIt tool. This tool was

designed to meet the following requirements:

• Simplified parameter reconfiguration: This feature is cru-

cial for quickly testing new configurations and adapting

to new implementation scenarios.

• General use pipeline: This involves creating a pipeline

composed of different groups of metrics for abstraction

and adaptation to a wide variety of scenarios imposed by

different applications.

• Reduced user interaction: The server allows the planning

and movement of a robotic manipulator with minimal

user interaction.

In a typical interaction with the pipeline, which structure is

illustrated in Figure 1, users can choose to include a perception

of the robot’s surroundings in the planning. This is achieved by

activating and defining the topic in the YAML configuration

file where the point cloud is published. Once this is done,

the pipeline processes the point cloud until it is included as a

collision object in the planning scene. The processing of the

point cloud involves several heuristics (highlighted in yellow).

It begins with PointCloudRetrieval, which receives the point

cloud from the topic. This is followed by PointCloudDown-

samplingFilter, which reduces the number of points in the

point cloud. Next, PointCloudOutliersFilter removes points

from the point cloud that are distant from zones with a higher

concentration of points. PointCloudCentroid then finds the

centroid of the point cloud and calculates a set of shifted
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Fig. 1: Pipeline block structure of the action server.

centroid points to guarantee a linear trajectory when planning

in constrained workspaces. Optionally, the user can choose to

calculate a pregoal point using the PointCloudPregoal, which

is a shifted goal point, to guarantee the right positioning of the

end effector for grasping/placing tasks. Finally, PointCloudOc-

tomap converts the point cloud into an octomap, i.e. a collision

object representing the point cloud. Once the point cloud has

been processed, the server moves on to the planning phase.

This involves the MoveIt framework (highlighted in orange),

which plans a path for the manipulator that avoids collisions,

in joint space. If the planning is successful, the path is

converted into commands compatible with the robot controller

and also a format that can be interpreted by another action

server responsible for moving the robot manipulator. These

commands are also published in ROS parameter server for

future use. This is done by the SimplePathConverter heuristic

(highlighted in green). Suppose the action server responsible

for controlling the robot manipulator is unavailable. In that

case, the MoveRobot heuristic (highlighted in blue) sends

movement commands directly to the robot controller, for exe-

cution of the planned movement. All the parameters associated

with the heuristics explained, can be modified before launching

the action server. By disassociating these parameters from

their local definition in the source code, users can change

the configuration parameters without re-compiling the project,

making execution and testing more efficient.

The user can send a request to the pipeline, asking for one

of two modes:

• Mode No-PointCloud (NPC): This mode allows the user

to plan paths without considering the surrounding envi-

ronment, skipping the yellow group in Figure 1. This

mode will only take into consideration the robot Unified

Robot Description Format (URDF), guaranteeing no self-

collision.

• Mode With-PointCloud (WPC): This mode is responsible

for processing the surrounding environment, creating a

collision map for the path planning phase. This mode

will consider all the heuristics in the pipeline.

For a more simplified approach, this server loads up into

the parameter server an YAML file, which describes common

movements in a Transform Frame (TF) format, like the one

described in Listing 1.

Move_01:

{BaseFrameIdTF: reference_frame,

ToolFrameIdTF: child_frame,

Goal: [x, y, z, qx, qy, qz, qw]}

Listing 1: Example of move types used in the pipeline

All TFs are either directly retrieved from the TF tree by

the user or dynamically supplied by another action server,

depending on the specific objective, like for grasping and

placing tasks. For example, a static position is obtained by

moving the robot to the desired location and then reading

the TF between two arbitrary links, namely the reference

frame and child frame. To ensure the server can interpret any

TF between any two links, each server request triggers an

analysis of these movements. If the reference frame differs

from the base link or the child frame deviates from tool0,

they are converted to these standard values. This ensures

that the movement executed on the actual robot aligns with



expectations. To modify the reference base of the TF, it’s

essential to multiply the TF between the desired base and the

current base with the existing TF. This process is outlined in

Equation 1:

A
TC =

A
TB ∗

B
TC (1)

This allows the user to reference different positions to dif-

ferent frames depending on the application, without worrying

about if it is the correct frame or not. This conversion is

necessary since MoveIt uses one specific frame for planning,

which is normally the top frame in the URDF file. Therefore,

it is mandatory that all target points are referenced to the same

base frame.

IV. RESULTS

This section explores the testing of the pipeline in a

simulated version of the robot, the precision acquired by

the pipeline compared to the real robot controller, and the

implementation in the real robot in the execution of different

missions. For reference, this pipeline was tested on a mobile

manipulator, with a coupled UR10 from Universal Robots, a

2F-140 gripper from Robotiq, and a Phoxi 3D scanner.

A. Pipeline testing in simulation scenario

Before testing in a real robot, the pipeline was tested using

Rviz [11] and several simulation scenarios, to guarantee a safe

transition to the real robot. In an initial test, a purple object

was created. For the planning phase, two points were selected:

a starting state and a goal state, indicated by a red and yellow

arrow, respectively, in Figure 2. These points were determined

by a linear translation along the x-axis, with slight variations in

orientation. In this case, the path can’t be achieved by linearly

moving the manipulator’s end effector, and to reach the goal

state, MoveIt will have to plan a trajectory that avoids a direct

collision with the obstacle. Figure 2 shows the result of this

planning, described by a green line.

A second test, illustrated in Figure 3, included the percep-

tion of the environment. Two points were chosen for the plan-

ning, as depicted in Figure 3: the first point of interest is the

current reference point of the point cloud. This is the position

at which the octomap, i.e. the collision object representing the

point cloud, would be calculated and established; the second

point is chosen such that it would be obscured by the octomap

itself. This implies that for collision-free planning, a deviation

of the arm would be necessary.

As shown in Figure 3, the skill can plan a collision-free

trajectory between the two points.

B. Pipeline vs real controller

A key aspect of validating the proposed solution is assessing

the errors between two known positions in space reached by

the robot, whether through its controller or planning algo-

rithm. This evaluation is crucial to ensure that the planned

movements have adequate precision for executing tasks that

require high accuracy. Two arbitrary positions were compared:

Position A, and Position B, respectively illustrated in Figure

Fig. 2: Path planning for a robotic manipulator between two

points with one obstacle in between.

Fig. 3: Path planning for a robotic manipulator between two

points with perception of the environment.

4b and in Figure 4c. For reference, the robot’s home position

is illustrated in Figure 4a.

Once the planning has been completed using both methods,

it is then necessary to extract the robot’s final poses, through



(a) Robot in home position. (b) Robot in position A. (c) Robot in position B.

Fig. 4: Robot positions for precision comparison.

the TF tree in ROS, when the movements are executed by

the controller and the planning pipeline. To accomplish this,

the TF between two links, namely base link and tool0, i.e.

robot’s base and its phalange, respectively, was extracted. The

choice of these two links is completely arbitrary. The only

consideration when choosing the links is to ensure that, at

least, one of them is fixed and that both belong to the robot’s

kinematic chain. Table I shows the robot’s translation and

rotation values for the different positions.

TABLE I: Comparison between skill planning and robot

controller for known poses.

Poses
Translation (m) Euler (rad)

x y z roll pitch yaw

Controller (A) -0.265 -0.177 0.567 3.061 -0.090 -0.044

Pipeline (A) -0.265 -0.177 0.568 3.055 -0.084 -0.048

Controller (B) -0.425 0.479 0.614 3.097 0.013 1.499

Pipeline (B) -0.428 0.481 0.606 3.099 0.021 1.505

In Table I, the thresholds for significant differences are

set at 3 millimeters for translation and 0.005 radians (0.72

degrees) for orientation. The translation pair for Position B is

highlighted in red, indicating a difference of approximately

8 millimeters in the Z-axis translation value between the

controller and the pipeline. For the positions’ orientation, pairs

with differences greater than the 0.005 radians threshold are

highlighted in orange. The two highlighted orientation pairs

are for Position A (Pos. A) in the roll orientation, showing a

difference of 0.006 radians (0.34 degrees), and for Position

B (Pos. B) in the pitch orientation, with a difference of

0.008 radians (0.46 degrees). It is possible to assume that the

positions achieved by the planning pipeline differ in max 8

millimeters, being an average error, of less than 3 millimeters

for pose translation and a pose rotation error less than 0.72

degrees, being 0.46 degrees the max detected. This accuracy

is only possible thanks to the calibration of the URDF models,

using a script provided by Universal Robots 1.

C. Skill implementation in real robot

After the simulated tests, the proposed system was deployed

in the real robot. Therefore, several tasks were performed to

check the capability of the system. The first real test consisted

of moving the robot manipulator, between two pre-defined

points. The execution of the trajectory in the simulated robot

is illustrated in Figure 5a. The execution in the real robot can

also be seen in Figure 5b.

(a) Trajectory execution on the
simulated robot.

(b) Trajectory execution on the
real robot.

Fig. 5: First test on the real robot.

1More information at Universal Robots Calibration.



After testing various movements with the robot and proving

the high precision of the developed system, it was possible to

carry out more complex tasks. To do this, two different tasks

were considered: one was to pick up and place an object and

the other was to avoid an obstacle barrier.

The initial task involved positioning the robotic manipulator

to perform a scan. After this, the point cloud retrieved, was

used to identify the part using 3D perception and segmentation,

and to determine a grasp position with a separate action server.

Finally the robot manipulator could perform the task of pick

and place, considering all the intermediate movements to reach

the goal position.

In the past, these intermediate movements were carried out

directly with the controller, without taking the robot cell into

account for self-collision. In these tests, all the movements

executed by the robot were planned by the planning skill.

Figure 6 shows the movements performed by the real robot

when it scans (Figure 6a) and picks up the detected object

(Figure 6b). The mission continues with the lifting movements

of the object (Figure 7a) and the return to the starting position

(Figure 7b).

(a) Robot scanning the object. (b) Robot picking the object.

Fig. 6: Robot executing scan and pick of an object.

A second test with the real robot was carried out to check

the pipeline ability to plan paths for the robotic manipulator,

considering the surrounding environment. In this test, a barrier

was built using cardboard boxes between the robot’s scanning

pose and its final pose. This barrier prevented linear movement

between the two points, so it was necessary to plan either

above the barrier or around it. The constructed barrier is

similar to the one illustrated in Figure 8a. The position of

the robot’s gripper in relation to the barrier is illustrated in

Figure 8b, to prove that it is close, but not colliding, with

it. The final result is illustrated in Figure 9, where the robot

successfully plans a trajectory between its current pose and

the final pose along the side of the barrier.

(a) Robot lifting the object. (b) Robot placing the object.

Fig. 7: Robot executing lift and place of an object.

(a) Barrier used for collision
avoidance test.

(b) Distance between gripper and
barrier.

Fig. 8: Barrier setup and distance between gripper and barrier.

V. CONCLUSION

This paper addresses the escalating interest among re-

searchers in simplifying the process of motion planning for

robotic manipulators. While several tools have been developed

to this end, they often lack intuitive usability.

In this paper was presented a streamlined approach to

path planning for robotic manipulators, offering a solution

for researchers and enthusiasts alike. The developed pipeline

handles the majority of complex tasks associated with path

planning, freeing users to concentrate on other aspects. The

results demonstrate the feasibility of maneuvering the robotic

manipulator using a simple server request, applicable across

a range of scenarios. These include pick-and-place tasks for

various objects and obstacle avoidance.

Looking ahead, it will be necessary to explore additional

libraries, such as the RL and OpenRAVE mentioned in this

paper. The goal is to develop a pipeline compatible with all



(a) Robot in home position. (b) Robot scanning the barrier. (c) Robot on the side of the barrier. (d) Robot reaching the goal.

Fig. 9: Robot executing a path avoiding collision with the barrier illustrated in Figure 8a.

these libraries, enabling users to select the one that best suits

their needs. Furthermore, it would be beneficial to execute

benchmarks on each of the paths returned by the planners.

This would allow for a comparison and selection of the optimal

path. This paper thus serves as a stepping stone towards more

efficient and user-friendly robotic manipulation.
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