
Model-Based Policy Optimization
for Legged Locomotion

Javier Garcia-Barcos
I3A,

Universidad de Zaragoza
Zaragoza, Spain

jgbarcos@unizar.es

Ruben Martinez-Cantin
I3A,

Universidad de Zaragoza
Zaragoza, Spain

rmcantin@unizar.es

Luis Montesano
I3A,

Universidad de Zaragoza
Zaragoza, Spain

montesano@unizar.es

Abstract—In this paper, we explore model-based reinforcement
learning (MBRL) for legged locomotion in robotics, employing
state-of-the-art techniques to evaluate the performance and
stability of the learning process under different models and
learning strategies. Our algorithm utilizes policy search methods,
specifically leveraging deep ensembles to construct a dynamic
model and integrating the soft actor-critic (SAC) framework
for policy learning. Deep ensembles are traditionally employed
to address model uncertainties and improve the robustness
of the learning process, however, this relationship is barely
evaluated in practice. We conduct a comprehensive comparison of
different architectural designs and ensemble strategies within our
dynamic model on several simulated legged robot platforms. Our
evaluation includes benchmarking the performance of different
strategies of state-of-the-art algorithms, providing a detailed
analysis of learning speed, stability, and overall effectiveness. The
results highlight the importance of certain design criteria which
are typically assumed as granted. This study provides valuable
insights into the application of deep ensembles and SAC in MBRL
for legged locomotion and complex robotic control systems.

Index Terms—model-based rl, exploration, bayesian nn

I. INTRODUCTION

Legged locomotion is fundamental for robots to accomplish
tasks in human environments as wheeled locomotion is limited
in stairs, ladders, certain terrains, etc. Legged locomotion
spans from one-leg hoppers to spider-like hexapods, including
human-like robots or horse-like quadrupeds [1]. However,
legged locomotion control is much more complex and con-
voluted than other types of locomotion. Even static balancing
can be problematic for certain robots.

Reinforcement learning (RL) in general, and deep rein-
forcement learning in particular, are promising technologies
to deal with the hard control problems of legged locomotion,
even in rough or unexpected terrain with robots from all
kinds of shapes and number of legs [2]–[4]. By leveraging
the predictive properties of neural networks, previous works
have some outstanding results in learning complex walking
patterns using reinforcement learning [5], [6]. However, most
reinforcement learning algorithms use a model-free strategy,
enabling great generalizability capabilities. That is, the same
algorithm and model architectures can be applied in many

This work was supported by DGA T45 23R and
MCIN/AEI/ERDF/NextGenerationEU/PRTR projects PID2021-125209OB-
I00, TED2021-129410B-I00 and TED2021-131150BI00.

Fig. 1: Locomotion environments used in this work. The top
plot corresponds to a planar hopper robot, which has to learn
to walk forward, without falling, as fast as possible. It consists
of 4 links and 3 joint actuators: leg, knee and foot. The bottom
part of the figure is a planar cat-like robot called halfcheetah.
It consists of 9 links and 8 joints, including the two paws. In
this case, we have replaced the standard task of running, for
a flipping task where the robot has to learn to do a backflip
in place. Diagram figures from Gymnasium [9].

contexts and configurations, and remove many assumptions
about the dynamics of the robot or the environment [7], [8].

In practice, many robotics applications are not compatible
with large datasets. Collecting data is expensive in many
ways: energy, time, wear, money, resources, etc. Large robotic
datasets are very limited and difficult to scale. Alternatively,
there are methods to adapt simulator data for reinforcement
learning and close the simulation to a real gap. However, this
still requires a complex simulation with an accurate physics
engine, precise robot and environment models, realistic sen-
sors, etc. Similarly, this is again expensive computationally
and in terms of resources. Therefore, there is a necessity for
data-efficient reinforcement learning algorithms.

Model-based reinforcement learning (MBRL) algorithm is

Copyright notice: 979-8-3503-7636-4/24/$31.00 ©2024 IEEE

a branch of RL algorithms that learns a dynamic model of the
robot and the environment to predict future states and rewards
[10]–[12]. Unlike model-free approaches, which rely solely on
interactions with the environment to learn a policy, MBRL uses
the learned model to simulate these interactions. This allows
for more sample-efficient learning, as the agent can evaluate
multiple possible actions and trajectories using the model
before executing them in the real environment. We can assume
that MBRL generated imaginary interactions. Also, because
MBRL uses computational models, such as Gaussian processes
or neural networks, they are much faster and more efficient
to generate than physics engines and complex simulators.
Thus, MBRL is particularly useful for our scenario, where
data collection is expensive or time-consuming, offering the
potential for faster and more efficient policy optimization.

Our contributions are an analysis of MBRL algorithms and,
in particular, of model-based policy optimization (MBPO)
using deep ensembles as a dynamic model, which is a method
that is capable of solving different legged locomotion scenarios
such as those in Figure 1. Based on the literature, the size of
the neural network, and more importantly, the size of the deep
ensemble model should translate into an increased quality of
the model uncertainty as described in Section II-A. In this
paper, we analyze the performance of the learning algorithms
in terms of model size and uncertainty quality. Furthermore,
we found that many implementations use a method that has
not been reported in the literature that we call elites selection.
It reduces the number of ensembles used for prediction, which
can help improve the predictive throughput, but seems counter-
intuitive in theory with proper uncertainty calibration. We
analyze the influence of the elite’s trick in the performance
of the results.

II. MODEL-BASED REINFORCEMENT LEARNING

We can frame the problem of legged locomotion in RL
under the formal mathematical framework of the Markov
Decision Process (MDP). It assumes that state transitions
satisfy the Markov property, that is future states of the
process only depend on the present state, or mathematically
p(st+1|st) = p(st+1|s1, · · · , st). An MDP is defined by
the tuple (S,A, T , r, γ, p0). A is the action space, S is the
state space, γ ∈ (0, 1) is the discount factor. The possible
transition dynamics of the system are defined by the function
T : S × A → p(S), initial state is sampled from distribution
p0(s) and a reward function r(s, a) : S × A → R. In RL,
the goal is to find the optimal policy π∗ that maximizes the
expected sum of rewards:

π∗ = argmax
π

E

[∑
t=0

γtr(st, at)

]
(1)

In practice, the dynamics of the transition function T =
p(s′|s, a) and, in some cases, the reward function r(s, a) can
be assumed to be unknown. As commented before, model-free
methods try to solve Equation (1) directly without explicitly
modeling T . In contrast, model-based reinforcement learning,

on top of learning the optimal policy π∗, also learns a prob-
abilistic model of the dynamics of the system p̃(s′|s, a) ≈ T .
This model is leveraged to help with learning the optimal agent
policy π∗ more efficiently in terms of interactions with the
real environment. To simplify the notation, for the remainder
of the paper, we use p(s′|s, a) as the approximate distribution
resulting from the dynamic model.

MBRL methods typically follow a general recipe: 1) an
agent policy π is used to act on the real environment and
collect real data Denv, 2) then this data is used to learn the
dynamics model p(s′|s, a), 3) which then is used to generate
model rollouts following a policy π and collect model data
Dmodel, and, 4) finally, the data is used to learn the agent policy
π. Different methods differ in how each of the components are
used, such as: how the data is used (both Denv and Dmodel),
the amount of model and policy updates, training frequency,
model rollout generations.

a) Dynamics model: The dynamics model is a super-
vised learning problem that uses data acquired from real
environment interactions Denv = [d1, . . . , dN] where di =
(si, ai, s

′
i, ri) are one-step transition data. Note that classical

dynamics models only require data in the form di = (si, ai, s
′
i)

however, we consider the general case where the reward
function is unknown. In this case, you can use the same model
with multiple heads or outputs to predict both the next state s′

and current reward r(s, a). This model can be non-parametric,
such as Gaussian processes [10] or parametric, such as deep
neural networks [11], [12]. Given that we are dealing with a
probabilistic model p(s′|s, a), the output is a distribution, such
as the parameters of a Gaussian distribution (µ, σ). In the case
of the Gaussian process, this distribution comes directly from
the prediction. In the case of deep neural networks, we also
need multiple heads to predict both the mean and variance
of the distribution. Then, we can say that the neural network
is learning both the prediction µ(s, a) and a heteroscedastic
noise σ(s, a). Model parameters θ are learned by optimizing
loss functions such as maximum likelihood estimation (MLE)
or maximum a posteriori (MAP) of the model weights:

θMLE = argmax
θ

log p(D|θ)

θMAP = argmax
θ

log p(D|θ)p(θ)
(2)

b) Model usage: The learned dynamics model p(s′|s, a)
can be used to perform model rollouts and acquire model data,
reducing the need for real world interactions. This can be seen
as solving an approximate MDP where the transition function
T is replaced by its approximation p(s′|s, a). Alternatively,
it can also be understood as if the learned model is used
as a computationally cheap simulator which also provides
probability distributions of each prediction during a transition.

A. Bayesian model-based RL

According to the literature, one crucial aspect of learning
the dynamics model is capturing both the aleatoric uncertainty
and epistemic uncertainty [11]–[15]. Aleatoric uncertainty is
uncertainty associated with the data or data noise. In many

models, a constant noise level or homoscedastic noise is
assumed. Alternatively, we can use a multi-headed neural
network to predict a noise level for each input or heteroscedas-
tic noise. The epistemic uncertainty or model uncertainty,
corresponds to the uncertainty due to the lack of knowledge
or model mismatching. The Bayesian approach to epistemic
uncertainty corresponds to replace Equation (2) by finding the
whole posterior distribution p(θ|D) using Bayes rule:

p(θ|D) =
p(D|θ)p(θ)

p(D)
=

p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

. (3)

Unfortunately, the integral in the denominator is intractable
for neural networks or nonlinear problems. Therefore, approx-
imate Bayesian inference is needed. Furthermore, in order to
use the posterior distribution in our predictions, we also need
to compute the predictive posterior distribution by marginal-
izing the weights. That is:

p(s′|s, a) =
∫
θ

p(s′|s, a, θ)p(θ|D)dθ (4)

Again, this integral is intractable and we also need to rely on
approximate Bayesian methods to estimate it. Some methods
use a Gaussian approximation of the posterior and predictive
posterior distribution using either the Laplace approximation
[14], [16] or variational inference [17]. However, the most pop-
ular method is to use a sample representation of the network
weights {θi}Mi=1, as in Monte Carlo where θi ∼ p(θ|D) is a
sample of the posterior distribution, and replace the integrals
with the corresponding sample approximation, that is we have
M different networks each one with different weights θi and
then we can compute:

p(s′|s, a) ≈
M∑
i=1

p(s′|s, a, θi) (5)

where p(s′|s, a, θi) is the prediction of the i-th network.
For computing a sample representation, there are methods
based on Monte Carlo Markov chain methods, with specific
proposals but which are difficult to work in practice. For
scalable approaches, the most popular methods are Monte
Carlo dropout [16], [18] and deep ensembles.

a) Deep Ensembles: Deep ensembles [19] is a method to
sample neural networks, which is designed for its simplicity
and scalability, being able to be applied to any architecture
and learning method. It is based on the idea of sample-
then-optimize, where M different networks are trained inde-
pendently from random initial weights. The idea is that by
optimizing Equation (2) using gradient descent from different
random initializations will end up in each network optimizing
a different local optimum, capturing the multimodality of the
posterior distribution. Although this method of sampling does
not properly represent the posterior distribution, given the
dimensionality of the weight space in deep neural networks
and the reduced number of samples required (remember that
each sample is a different network) the performance is superior
to other Bayesian methods for neural networks [19], [20] and it
is the gold standard in reinforcement learning literature [11],

[12]. In the RL literature [11], [12], some authors propose
to combine ensembles with bootstrapping, in what is called
probabilistic ensembles where each network is trained with a
different random subset of the dataset, to give more variability
to the samples. However, in other fields, such as computer
vision, it has been shown to reduce performance [19].

b) Elite selection of ensembles: We found that some
authors use a subset of the deep ensembles in their official
implementations of model-based RL methods [11], [12], [21].
The idea is to train a larger set of deep ensembles M and use
inference only with a subset B < M of the ensembles with
the best final loss. To the authors’ knowledge, this has never
been reported officially. Thus, we have decided to call it elites
selections. More concretely:

{θEL
j }Bj=1 = argmax

θ
log p(D|θDE

i)p(θDE
i) ∀i = 1 . . .M

(6)
where θEL are the elite samples and θDE are the original
samples obtained with deep ensembles. This seems counter-
intuitive as this reduces the calibration of the epistemic
uncertainty, resulting in an overconfident estimation of the
uncertainty. On one hand, this reduces the computational
cost and memory footprint during evaluation, as it requires
less number of network passes during prediction and average
performance should be higher. On the other hand, the largest
computation cost of deep ensembles is training, which remains
constant. Thus, we will evaluate the performance of this
method in our experiments.

III. MODEL-BASED POLICY OPTIMIZATION (MBPO)

In this paper, we will focus on model-based policy optimiza-
tion (MBPO) [12]. The goal remains the same as other RL
methods, finding the optimal policy π∗ as defined in equation
(1). It uses a policy optimization approach, that is, a policy
is optimized by performing gradient updates but relies on

Algorithm 1 Model-Based Policy Optimization

Require: Agent policy π, predictive model p, environment
dataset Denv, model dataset Dmodel

1: for N epochs do
2: Learn dynamics p(s′|s, a) from Denv via MLE
3: for E steps do
4: Take action in the environment with π
5: Add observed transition to Denv
6: for N model rollouts do
7: Sample st uniformly from Denv
8: Perform k-step model rollout from st with π
9: Add model rollouts to Dmodel

10: end for
11: for G gradient updates do
12: Update agent policy π using Dmodel
13: end for
14: end for
15: end for

S
0

Updated
policy

Model
Rollouts

Environment
step

Sample
rollout
start

D
model

D
env

Current
policy

K steps

Fig. 2: Overview of branching rollouts procedure in MBPO.
From a current policy (orange) and previously acquired data
in the real environment Denv (blue), a set of initial states are
sampled (red) from Denv uniformly which are then used as
starting states for model rollouts (yellow). Model rollout uses
the current dynamics model to simulate imaginary transitions
up to k-steps. All the data acquired from model rollouts Dmodel
is used to update the policy.

learning a dynamics model and model rollouts to improve the
data efficiency. Algorithm 1 shows an overview of the method.

Similarly to other model-free and model-based RL methods,
to populate the initial data in Denv, MBPO uses a randomized
policy to initialize Denv. After that, the current policy π is
used to acquire new environment data.

Then, following the MBRL general recipe, a dynamics
model is learned from previously acquired environment data
Denv. This model is used to perform model rollouts following
the current policy π and generate model data Dmodel. Since
model dynamics don’t change drastically between environment
steps and the training is costly as shown in Section II-A,
training frequency is episodic.

For model rollouts, it uses a branching rollout strategy.
Figure 2 shows a diagram of the approach which, instead of
doing rollouts from the real environment’s initial or current
state up until the full task horizon, it favors smaller k-step
rollouts branching from states uniformly sampled from Denv.

Finally, taking advantage of the model-based approach, we
use the generated model data Dmodel to update the current pol-
icy π. Since the branching rollouts have shorter horizons, for
updating the policy, MBPO relies on smaller but more frequent
updates of the policy, updated once per real environment step.

IV. EXPERIMENTS

The experiments are performed in a simulated environment
with different legged robots from the Gymnasium benchmarks
[9] as shown in Figure 1, using Mujoco [22] as the physics
simulator. We have used the Hopper and HalfCheetah robots.
However, for the HalfCheetah robot, we have replaced the
default running task with a flipping task where the robot has to
perform a backflip to provide a broader variability of scenarios.

0 20 k 40 k 60 k 80 k 100 k 120 k
real env steps

1 k

0

1 k

2 k

3 k

4 k

5 k

ta
sk

 re
wa

rd

Hopper
Default sizes
Higher ensemble and hidden layer sizes

Fig. 3: Execution of MBPO in the Hopper environment
comparing different model sizes. It shows slightly worse
performance using the bigger model.

All the environments have continuous state and action spaces.
More detail:

a) Hopper: It is a simulated one-legged robot that moves
in a 2D space [23]. It consists of 3 joints: thigh, leg and foot;
and a torque can be applied to each of them. Figure 1 shows an
image of the robot. The reward is the distance traveled in the
positive x-axis. For this environment, A ∈ R3 and S ∈ R11.

b) Roll HalfCheetah: Simulates a two-legged robot that
moves in a 2D space [24]. Each leg consists of 3 joints
in which torque can be applied. As opposed to the classic
HalfCheetah environment reward [9] which rewards distance
traveled on the positive x-axis, here we perform the flip task
which rewards rotation of the root in a counter-clockwise
direction. For this environment, A ∈ R6 and S ∈ R17.

Our implementation of MBPO is based on the MBRL-
Lib library [21]. The performance will be measured in terms
of task reward at test time, executing the current policy for
100 episodes and reporting average values. Progress will be
measured in the number of real environment interactions. In
the experiments, we analyze the influence of the network size
and ensemble size. We also consider initializing the dynamic
model using actively explored data of the environment [15],
which in theory, provides a better calibration of the model by
using more informative data. Finally, we evaluate the influence
of the elites selection discussed in Section II-A.

A. Influence of model size

In previous works [12], this type of scenario (Hopper) is
solved with a relatively small multi-layer perceptron (MLP)
for the dynamic model (4 layers of 200 hidden neurons per
layer) and especially for the deep ensembles (7 networks,
choosing 5 elites). In our first experiment, we tried to increase
the model size (4 layers and 512 hidden neurons per layer)
and, especially, the size of NN for the deep ensembles (16
networks, choosing 5 elites). As seen in Figure 3, contrary to
intuition, the performance is quite similar with bigger models
having a slightly reduced performance. Furthermore, the model
seems to stagnate, meaning that including more data would
not improve the performance of the larger model. However,
we hypothesize that a larger model might benefit from more
informative data. Thus, in the next section, we tried initializing

0 20 k 40 k 60 k 80 k 100 k 120 k 140 k
real env steps

0

2 k

4 k

ta
sk

 re
wa

rd
Hopper

Random initialization (5k)
Active exploration (10k)

(a)

0 20 k 40 k 60 k 80 k 100 k 120 k 140 k
real env steps

0

2 k

4 k

ta
sk

 re
wa

rd

Hopper
Random initialization (5k)
Active exploration (10k)
Active exploration (20k)

(b)

0 20 k 40 k 60 k 80 k 100 k
real env steps

750

500

250

0

250

500

750

ta
sk

 re
wa

rd

Roll HalfCheetah
Random initialization (5k)
Active exploration (6k)

(c)

Fig. 4: Comparison of different initialization procedures with MBPO, comparing random policy against a model-based active
exploration (MAX). Initialization steps are indicated in parenthesis and data is shifted to account for environment interactions
used by MAX. Results from a) Hopper, b) Hopper with a bigger model and c) roll HalfCheetah. Results show no significant
statistical difference except for the complex dynamics of HalfCheetah, in which MAX hinders performance.

the model with an information-based active exploration [15]
to improve the initial data quality.

B. Initialization with Active Exploration

In Section III we explained that MBPO requires initializa-
tion data before it can begin updating the policy of a SAC
agent and proceed with the MBPO procedure. For that, MBPO
uses an untrained SAC, which in practice, behaves like a
random policy. Random policy is a typical initialization in
both model-free and model-based RL approaches as it provides
enough coverage and it is trivial to implement. However, there
are alternative approaches that use active learning to carefully
select the most informative data points for this initialization
phase. Model-based Active Exploration (MAX) [15] is an
active exploration method for model-based RL that aims to
efficiently explore the state and action spaces to learn the most
informative dynamic model. It learns an exploratory policy by
introducing an information gain utility based on the dynamic
model uncertainty as a reward function.

Next, we replace the initial 5k steps of random initialization
of MBPO with an execution of the MAX algorithm for 10k
steps in the real environment. Note that all the initialization
steps are used to learn the dynamic model, but not to learn
the policy. Policy learning is based on model rollouts, being
the same algorithm despite the initialization. Ideally, a more
informative model should generate better rollouts which, at the
same time, should improve the learning performance.

First, we evaluate the influence of informative data in the
small model from the previous experiment. Figure 4a shows
results in the Hopper environment and shows that it does
not produce any meaningful improvement. If we take into
account the 10k interactions of MAX before starting MBPO,
it shows that data efficiency slightly deteriorates as this extra
data barely produces any difference. Contrary to our initial
hypothesis, the performance is also similar for the larger
models and ensemble size, as shown in Figure 4b.

We also try the flip task in HalfCheetah, which has more
complex dynamics, that we learn with a larger number of en-
sembles (32). In this scenario, previous results in the literature

have shown that MAX produces more informative samples,
which should help the performance [15]. However, figure 4c
shows the results on roll HalfCheetah are still underperforming
and it saturates before. On the other hand, the variability is
much lower, which might be the result of more consistent or
robust training. We conjecture that the exploratory data, being
off-policy might generate biased or unlikely rollouts, which
undermines the training performance overall, but at the same
time improves the robustness.

C. Ensemble elites pruning

In Section II-A, the concept of elites selection was intro-
duced as a pruning method where predictions with the dy-
namics model are performed only with the top N performing
ensembles based on predictive performance. As mentioned
before, this is counter-intuitive to the idea of proper uncertainty
quantification. Theoretically, training multiple models allows
the ensemble to quantify the epistemic uncertainty better but,
by ignoring some of them for predictions, we are producing
overconfident estimates of the epistemic uncertainty.

Here we study if there is a practical impact of introducing
the pruning with elites for model predictions. For that, we
performed experiments with Hopper and the roll HalfCheetah,
which uses 16 and 32 ensembles respectively, compared to
using only the top N = 5 ensembles. Results in Figure 5
show that average performance deteriorates when introducing
elites selection and using the full ensemble for predictions.
Results align with the hypothesis that better model uncertainty
calibration translates into improved data efficiency. However,
there are still practical reasons to use elites. To maximize the
predictive throughput and achieve faster model rollouts, it is
important to fit all ensembles into memory and elites selection
reduces the number of ensembles required for predictions.
Additionally, for simple models or with a more conservative
number of elites, the negative impact of elites could be
reduced.

0 20 k 40 k 60 k 80 k 100 k 120 k
real env steps

0

1 k

2 k

3 k

4 k
ta

sk
 re

wa
rd

Hopper
All ensembles (16)
Only elite ensembles (5)

(a)

0 20 k 40 k 60 k 80 k 100 k
real env steps

600

400

200

0

200

400

ta
sk

 re
wa

rd

Roll HalfCheetah
All ensembles (32)
Only elite ensembles (5)

(b)

Fig. 5: Comparison of MBPO using all the ensembles and using the top N = 5 elites selection comparing: a) Hopper and b)
roll HalfCheetah. Results show that using elites deteriorates performance, especially in complex tasks.

V. CONCLUSIONS

This study explores how design choices in model-based
reinforcement learning (MBRL) affect data efficiency. MBRL
relies on cheap model rollouts to reduce real world interactions
to learn a policy. Specifically, we examine model-based policy
optimization, a deep ensemble method capable of solving
legged locomotion tasks efficiently.

We explore the influence of design decisions such as model
complexity or improved data quality. Contrary to theoreti-
cal expectations, results showed that smaller neural network
and ensemble sizes simplify learning the dynamics and im-
prove performance. Similarly, we show that initialization with
random policy is better than active exploration, since the
improved data quality comes at the cost of a highly off-
policy dataset that hinders policy learning. Finally, we studied
elites selection, an undocumented implementation trick that
improves predictive throughput with a subset of ensembles
but, as we show, can deteriorate the performance with complex
models due to poor uncertainty calibration. Although results
may seem negative, such design decisions are common prac-
tices and working hypotheses in the literature and, as we see,
it highlights the importance of empirical testing to validate
theoretical assumptions and uncover potential limitations.

REFERENCES

[1] Jawaad Bhatti, AR Plummer, Pejman Iravani, and Beichen Ding. A
survey of dynamic robot legged locomotion. In 2015 International
Conference on Fluid Power and Mechatronics (FPM), pages 770–775.
IEEE, 2015.

[2] Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisen-
roth. Bayesian optimization for learning gaits under uncertainty: An
experimental comparison on a dynamic bipedal walker. Annals of
Mathematics and Artificial Intelligence, 76:5–23, 2016.

[3] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret.
Robots that can adapt like animals. Nature, 521(7553):503–507, 2015.

[4] J Peters. Reinforcement learning for humanoid robots-policy gradients
and beyond. In 3rd IEEE International Conference on Humanoid
Robotics, 2003, 2003.

[5] Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker,
and Sergey Levine. Learning to walk via deep reinforcement learning.
In Robotics: Science and Systems XV. Robotics: Science and Systems
Foundation, 2019.

[6] Nicolas Heess, Dhruva Tb, Srinivasan Sriram, Jay Lemmon, Josh Merel,
Greg Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami, et al.
Emergence of locomotion behaviours in rich environments. preprint
arXiv:1707.02286, 2017.

[7] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT Press, 2018.

[8] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey
on policy search for robotics. Foundations and Trends® in Robotics,
2(1–2):1–142, 2013.

[9] Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis,
Gianluca de Cola, Tristan Deleu, Manuel Goulão, Andreas Kallinteris,
Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea Pierré,
Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G.
Younis. Gymnasium, March 2023.

[10] Marc Deisenroth and Carl E Rasmussen. PILCO: A model-based and
data-efficient approach to policy search. In ICML, 2011.

[11] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey
Levine. Deep reinforcement learning in a handful of trials using
probabilistic dynamics models. NeurIPS, 31, 2018.

[12] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to
trust your model: Model-based policy optimization. NeurIPS, 32, 2019.

[13] Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian
segnet: Model uncertainty in deep convolutional encoder-decoder archi-
tectures for scene understanding. preprint arXiv:1511.02680, 2015.

[14] David JC MacKay. Bayesian interpolation. Neural computation,
4(3):415–447, 1992.

[15] Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based
active exploration. In ICML, pages 5779–5788. PMLR, 2019.

[16] Carlos Plou, Ana C. Murillo, and Ruben Martinez-Cantin. Active
exploration in bayesian model-based reinforcement learning for robot
manipulation, 2024.

[17] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational
inference: A review for statisticians. Journal of the American statistical
Association, 112(518):859–877, 2017.

[18] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approxima-
tion: Representing model uncertainty in deep learning. In ICML, pages
1050–1059. PMLR, 2016.

[19] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Sim-
ple and scalable predictive uncertainty estimation using deep ensembles.
NeurIPS, 30, 2017.

[20] Javier Rodrı́guez-Puigvert, Rubén Martı́nez-Cantı́n, and Javier Civera.
Bayesian deep neural networks for supervised learning of single-view
depth. RA-L, 7(2):2565–2572, 2022.

[21] Luis Pineda, Brandon Amos, Amy Zhang, Nathan O. Lambert, and
Roberto Calandra. Mbrl-lib: A modular library for model-based re-
inforcement learning. Arxiv, 2021.

[22] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics
engine for model-based control. In IEEE/RSJ IROS, 2012.

[23] Tom Erez, Yuval Tassa, and Emanuel Todorov. Infinite-horizon model
predictive control for periodic tasks with contacts. In Robotics: Science
and Systems, 2011.

[24] Paweł Wawrzyński. A cat-like robot real-time learning to run. In Mikko
Kolehmainen, Pekka Toivanen, and Bartlomiej Beliczynski, editors,
Adaptive and Natural Computing Algorithms, pages 380–390. Springer
Berlin Heidelberg, 2009.

