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Abstract. We present a dynamic p-adaptation algorithm for unsteady problems that targets
the truncation error for p-anisotropic Discontinuous Galerkin (DG) discretizations. In order
to achieve that,  we introduce a methodology to estimate the truncation error of unsteady
cases.  The  proposed method is  tested  for  compressible  flow problems,  where it  provides
significant  reductions  of  computational  resources  (both  in  storage  and  CPU-time)  as
compared to uniform refinement techniques.

Truncation error estimators based on the -estimation method have been successfully used to
perform locally adaptive simulations for steady boundary value problems [1,3,4]. However,
there is a lack of scientific literature on their use for unsteady cases.

Parting from a general partial differential equation,
(1)

the truncation error of a DG discretization of order N ( ) is defined as

(2)

Since the exact solution is generally not known, it is approximated as  ( ), and
the exact partial differentiation operator is approximated as . Therefore, the
truncation error estimation yields

(3)

To compute  equation  (3),  the  cheap-to-evaluate  decoupled  truncation  error  estimator  for
tensor-product  DG  methods  derived  in  [2]  is  adapted  to  unsteady  problems  and  the  p-
adaptation methodology with error-extrapolation that uses an anisotropic 3V multigrid cycle
described in [3] is employed as the error estimator.

We analyze the convection of an inviscid compressible vortex (Fig. 1) and the compressible
vortex shedding past a cylinder at Re=100 (Fig. 2). A thorough study of the accuracy and
computational cost of the method is presented when different truncation error thresholds and
adaptation intervals are used, as well as a comparison with uniform refinement techniques
and details on how to efficiently implement the proposed methodology. In general, significant
reductions  in  the  number  of  degrees  of  freedom  (DOFs)  and  computational  times  are
observed for the same levels of accuracy (dispersion and dissipation errors), as compared to
uniform refinement techniques (Fig. 3).
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Figure 1. Contours for density (a) and average polynomial orders (b) for the vortex 
convection case.

Figure 2. Contours for x-Velocity (a) and average polynomial orders (b) for the vortex 
shedding past a cylinder. Re=100.

Figure 3. Obtained dissipation error for uniform refinement and the proposed p-adaptation 
method vs. number of degrees of freedom (a) and CPU-time (b).
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