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Abstract. We present a multiphase model for two-phase incompressible flows. Several 
approximations can be found in the literature to model the evolution of multiphase flows. 
Volume of Fluid (VOF) model (Hirt and Nichols, 1981) is among the simplest and most 
popular models. VOF uses one set of momentum equations (shared by the two phases) and 
defines the concept of volume fraction, which corresponds to the volume occupied by each 
phase in each infinitesimal control volume. In the VOF model, the evolution of the volume 
fraction is tracked down by means of an advection equation. In this work, we use a Phase-
field method (Jacqmin, 1999) that conserves the simplicity of the VOF while providing 
physical meaning to the evolution equation for the spatial distribution of the two fluids. 
Therefore, the volume fraction is substituted by a phase-field parameter and the Cahn-
Hilliard equation (Cahn and Hilliard, 1958) is used to model its evolution. As far as the 
momentum equation is concerned, our model uses one shared set of the incompressible 
Navier-Stokes equations for the two-phase flow.  

 
Both the Cahn-Hilliard equation and the incompressible Navier-Stokes equations are 
discretised in space by means of a high-order discontinuous Galerkin method. The 
discontinuous Galerkin method is a popular discretisation method for conservation laws, such 
as the Navier-Stokes equations (Ferrer, 2017; Fraysse et al., 2016; Manzanero et al., 2018a; 
Wang et al., 2013), essentially due to its geometrical flexibility and computational efficiency. 
Specifically, we use a nodal variant of the DG method: the Discontinuous Galerkin Spectral 
Element Method (DGSEM) (Black, 1999; Kopriva, 2009). Recently, a method to enhance the 
robustness of the DGSEM based on split forms has been introduced (Gassner et al., 2017; 
Manzanero et al., 2018b) which turns it into a very interesting choice among the different 
variants of DG method.  
As far as time integration is concerned, the Cahn-Hilliard equation includes a fourth-order 
derivative which greatly limits the efficiency of explicit time integration schemes. Therefore, 
time integration of the system is performed by means of an implicit-explicit method that 
permits using the same time steps of a typical Navier-Stokes explicit solver while maintaining 
a computational (per time-iteration) cost similar to an explicit method. For a detailed 
description of the model, see (Manzanero et al., 2019). 
 
Several validation and test cases, including a spinodal decomposition, a rising bubble and 
several channel flows are presented to show the validity and the computational efficiency of 
our approach.  
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Figure 1 - LEFT. Initial condition and domain for a rising bubble test case. RIGHT. Evolution of the 
center of mass of the bubble with time compared with a sharp-interface model [11]. 
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