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ABSTRACT

In [1], it was remarked that the heat equation could be formulated as the O-relaxation limit of a hy-
perbolic system with source term. This formulation is attractive for the following reasons: it gives a
unified discretization of hyperbolic and diffusive terms; it may allow to get a high order representation
of gradients [2]; it may allow to relax the stiffness of the advection-diffusion coupling [2]; it may allow
to derive non reflecting boundary conditions [3].

The aim of this talk is first to propose an extension of Cattaneos formulation to general dissipative
systems such as the compressible Navier-Stokes equations, and prove that the proposed first-order
formulation is hyperbolic. The proposed first-order formulation is an alternative hyperbolic system
approach to the continuum-based hyperbolic first-order system approach introduced in [4].for the com-
pressible Navier-Stokes equations, and represents, for the first time, a significant improvement to the
non-symmetrizable first-order system approach given in [5].

Then a discontinuous Galerkin discretization of the system is proposed, and the benefits of this method
in terms of stiffness of the system and accurate representation of the fluxes compared to the classical
Navier-Stokes approach are discussed, see Figure 1.
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Figure 1: Order obtained on the velocity (top left), temperature (top right), on 7, (bottom left) and
on g, (bottom right) for a compressible Poiseuille flow. The observed order matches with the optimal
order for the original variables and also for the fluxes.



