
Analysis of SAT-Techniques in the

Finite-Element-Framework
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Simultaneous approximation terms (SATs) are a standard tool in the finite
difference community, together with summation-by-parts (SBP) operators, for
proving stability results. The main idea about SATs is that the boundary
condition is only fulfilled in a weak sense, and also a boundary operator is
constructed and applied which guarantees that a discrete energy estimation is
simultaneously fulfilled [3].
By introducing SBP operators in the discontinuous Galerkin framework [2],
also the SATs technique has been transferred and utilized to prove (entropy)-
stability. However, in continuous Galerkin schemes the SATs are -up to our
knowledge- not really in use and we want to change this.
In this talk, we focus on this issue. We shortly repeat the main aspects of
the SAT technique and demonstrate an approach to construct these boundary
operators. Different from the classical ansatz, we switch to entropy variables
for the estimation of our operators and consider non-linear problems. In [1]
an entropy corrections were introduced to guarantee entropy conservation or
even entropy stability for considered schemes. This ansatz is used in a pure
continuous Galerkin scheme. Together with the constructed boundary operator,
we demonstrate in numerical experiments that the obtained Galerkin scheme is
stable through our boundary procedure.
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∗Corresponding author: P. Öffner, philipp.oeffner@math.uzh.ch

1



[3] Jan Nordström, A roadmap to well posed and stable problems in computational physics,
Journal of Scientific Computing 71 (2017), no. 1, 365–385.

2


