Local time stepping scheme for district heating networks

Matthias Eimer^{a,b}, Raul Borsche^a and Norbert Siedow^b

^aDepartment of Mathematics, University of Kaiserslautern, Germany borsche@mathematik.uni-kl.de

^bFraunhofer ITWM, Kaiserslautern, Germany [matthias.eimer, norbert.siedow]@itwm.fraunhofer.de

As an effective and sustainable alternative to conventional heating systems, district heating has a huge potential, especially in urban areas. In order to optimally control the use of resources, a fast and accurate forward simulation is important.

In this talk we want to present a new solver for simulations of district heating networks. The numerical method applies the local time stepping that was introduced in [1] and used for blood flow models in [2] to networks of linear advection equations. Numerical diffusion as well as the computational effort on each edge is reduced significantly. In combination with a high order coupling approach an accurate and very efficient scheme is developed. In several numerical test cases we illustrate the efficiency of the method for simulations of district heating networks.

References

- M. Dumbser, M. Käser, and E.F. Toro. An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes V. Local time stepping and p-adaptivity, *Geophysical Journal International*, 171(2), 695–717, 2007.
- [2] Müller, Lucas O. and Blanco, Pablo J. and Watanabe, Sansuke M. and Feijóo, Raúl A. A high-order local time stepping finite volume solver for one-dimensional blood flow simulations: application to the ADAN model *International Journal for Numerical Methods in Biomedical Engineering*, 32(10), 2016.